

ADAPTIVE AGENT-BASED INTRUSION RESPONSE

A Dissertation

by

CURTIS A. CARVER JR

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fiilfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

DISTRIBUTION STATEMENT A
May 2001 Approved for Public Release

Distribution Unlimited

Major Subject: Computer Science

L

ADAPTIVE AGENT-BASED INTRUSION RESPONSE

A Dissertation

by

CURTIS A. CARVER JR

Submitted to Texas A&M University
in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Approved as to style and content by:

^
UdoW. Poocr

(Chair of Committee)

JohnY^

U-C/fAL^^ AT> Vy^JA
Steve Liu
(Member)

Michael T. Longnecker
(Member)

Wei Zhao
(Head of Department)

May 2001

Major Subject: Computer Science

Ill

ABSTRACT

Adaptive Agent-Based Intrasion Response. (May 2001)

Curtis A. Caiver Jr, B.S., United States Militaiy Academy;

M.C.S., Texas A&M University

Chair of Advisory Committee: Dr. Udo W. Pooch

A new methodology has been developed for adaptive, automated intrusion

response (IR) focusing on the role of software agents in providing that response. The

majority of intriKion response systems (IRSs) react to attacks by generating reports or

alarms. Tins introduces a window of vulnerabihty between when an intn^ion is detected

and when action is taken to defend agaimt the attack. This window of vulnerability has

been reduced through an agent-b^ed system that adaptively responds to intrusions.

Multiple IDSs monitor a computer system and generate intrasion alarms.

Interface agents maintain a model of each IDS based on the number of false

positives/negatives previously generated. It iKes tiiis model to generate an attack

confidence metric and passes this metric along with the intrusion alarm to the Master

Analysis agent. The M^ter Analysis agent classifies whether the incident is a

continuation of an existing mcident or is a new attack. If it is a new attack, the Master

Analysis agent creates a new Analysis agent to develop a response plan to the new

attack. If the incident is a continuation of an existing attack, the Master Analysis agent

passes the attack confidence metric and intrasion alarm to the existing Analysis agent

handling the attack. The Analysis agent analyzes an incident until it is resolved and

IV

generates a course of action to resolve the incident. To generate this course of action, the

Analysis agent involves the Response Taxonomy agent to classify the attack and Policy

Specification agent to limit the response b^ed on legal, ethical, institutional, or resource

constraints. The Analysis agent creates a course of action and then invokes the

appropriate components of the Response Toolkit. The Analysis agents employ adaptive

decision-making based on the success of previous responses. As decisions are made, the

results are displayed to the user interface.

This research presente a novel IR methodology that includes: response adaptation

to intrusive behavior based on confidence in the intrusion detection mechanism;

response adaptation to intrusive behavior b^ed on the success of previom intrusion

responses; and, synergistic support for multiple IDSs.

DEDICATION

This dissertation is dedicated to my wife, Eileen, and my children, Curtis,

Gregoty and Michelle. My joy in life is often simply a pale reflection of the love in their

eyes.

VI

ACKNOWLEDGMENTS

This research would not have been possible without the support of my mentors,

family and colleagues. I would lilce to thank my chair Dr. Udo Pooch for his guidance

and support during my gr^uate education. As an army officer selected to return to

graduate school, I could have attended ahnost any university in the United States. After

obtaining my meter's degree under Dr. Pooch's tutelage nearly ten years ago, it was an

easy choice for me to return to Texas A&M and to Dr. Pooch. Although he is not the

easiest person to work for, there is no one else that I would rather have as my chair or as

a mentor.

The other members of my committee, Drs. Yen, Liu, Longnecker, and Wood

significantly strengthened this research throu^ thek guidance and support. Rather than

simply show up to evaluate my work at my proposal and dissertation defense, my

committee members actively guided me throughout this research. Mainly through short

one-on-one sessions, my committee members helped me transform the concept of active

intrusion response into a comprehensive methodolo^ and fimctional prototype. For this

unselfish and professional support, I am very gracefiil.

My success for the last twenty-one years has been in large part due to my lovely

wife Eileen. She is my best fiiend and h^ always been there for me, regardless of the

t^k. She kept the hoiwehold running smoothly and efficiently despite tiie assistance of

our three overly happy and enthusiastic children. This allowed me the fi-eedom to

conduct this research. There would be no PhD without her support.

Vll

Finally, I would like to Msknowledge the help I received from my friends John

Hill, Buck Surdu, Jeff Humphries, Willis Marti, Dan Ragsdale, Dave Hess, Ellen

Mitchell and Dr. Tom loerger. The long discussions, bramstorming sessions, and

sometimes even heated debates helped me develop and refine many of tiie ideas in this

research. This is a better dissertation due to their input and I am a better person for

having such good friends.

VIU

TABLE OF CONTENTS

Page

ABSTRACT.................................... ..""iii

DEDICATION .. ••"••••V

ACKNOWLEDGMENTS...... ..vi

TABLE OF CONTENTS .. ••■..••■•v^^^

LIST OF TABLES..xii

LIST OF FIGURES ... ■••...■••..

CHAPTER

I INTRODUCTION..........

xm

A. Motivation1
B. Research Objectives. 3
C. Overview..4

II LITERATURE REVIEW •6

A. Mtroduction•............••.••••••••••••••••••• ••"••"••••"••6
B. Intrusion Detection Systems (IDS)7

1. Historical Perspective...—.....""7
2. Anomaly Detection............. ..9
3. Misuse Detection...................................••.•10
4. Specification-based Detection.10
5. Comparison of IDS Approaches 11
6. IDS Classification Techniques ...—.12
7. Host and Network-b^ed Intnwion Detection 19

C. Intrusion Response Systems20
l.Introduction..•—••• 20
2. CSM22
3. EMERALD ..•••..•••.•■■••"•• ■"■•2
4.JiNao.... ...2^
5. NetSTAT27

D. Security Taxonomies28
1. Protection Analysis (PA) Taxonomy..............29

IX

CHAPTER Page

2. RISOS Taxonomy .„„.„.....,.....................„......................,...........30
3. Landwehr Taxonomies „„..„„.........,......„33
4. Bishop Tfflconomy .„„....„..35
5. Aslam Taxonomy 37
6. Lindqvist Taxonomy38
7. Fisch DC&A Taxonomy...........................41

E. Software Agents... .,..42
F. Agent Communication 43

in DESIC3N........... .45

A. Introduction ..45
B. Intnwion Response Taxonomy45

1. Response Timing46
2. Type of Attack...47
3. Type of Attacker...........................47
4. Strengfli of Smpicion48
5. Implications of the Attack..48
6. Environmental CoMtraints ..49

C.Methodolo^... ..49
1. Intrusion Detection System(s) ...51
2. Interface Component ...51
3. M^ter Analysis Component ...52
4. Analysis Component ...54
5. Response Taxonomy Component..65
6. Policy Specification Component.......................65
7. Response Toolkit Component...66
8. System Administrator Interface...67

D. Adaptation of Intrasion Response68
E. Dealing with Uncertainty in Intneion Response68

IV IMPLEMENTATION ..72

A. Introduction... .72
B. Implementation Overview72
C. Intrusion Detection System Agent(s)........ .73
D. Interface Agents..74
E. M^ter Analysis Agent...78

1. Event List History..78

X

CHAPTER Page

2. Time Metric....................................
3. Session Identifier Metric
4. Attack Type Metric
5. Cumulative MA Decision-Making.
6. MA GUI

F. Analysis Agent.....................................
1. New Plan Generation......................
2. Plan Adaptation..,.,,,............,,

G. Response Taxonomy Agent.................
1. Degree of Suspicion „.,
2. Time of Attack.....,.,,.,..............,,,,,..
3. Type of Attacker.......,,,.,,..........,,,..,
4. Type of Attack................
5. Attack Implications „.„...............„„

H, Policy Specification............
I. Response Toolkit...................
J. System Administrator Interface „„„......

1. Response Tree
2. Menuing System .,.,.
3. Main Text Pane
4. Status Bar .,.,.
5. Progress Bar

K. Scenario Management
L. Summmy......,„„.............„„„.,.............

.79

.79

.80

.80

.82

.82

.82

.87

.90

.90

.91

.91

.92

.93

.93

.93

.95

.95

.97
,97
.98
.98
.99
.99

V RESULTS...... .100

A. Introduction
B. Comparison to Other Systems .,„.
C. Experiments„„„..................„„„„„„..........
D. Verification...........,.,,,,.......
E. Validation...............

1. Validation of the Master Analysis Agent.
2. Validation of the Analysis Agent
3. Validation of the Response Taxonomy....

.100

.100

.101

.102

.104

.104

.105

.105

VI SUMMARY AND CONCLUSIONS,,,

A, Summary.....................

.106

.106

XI

Page

B. Significance of Research i A7
. Future Work...............,........„„..,. IQO

1. Development of the Response Toolkit..„...,............l."....l™l""io8
2. hiterface Agents................... 1 na t XT i- in iy5
3. Network Support 1 m
4. Agent Protection...................,,..................,,^.^^^^^^^^^''* *"'''""'" 11 j
5. Better User hiterface.. _.'"]' *" j 11
6. Long-term Adaptation to Known Attackers.,,,...,.,,,......!

REFERENCES...........

..........................112

.........................113

APPENDIX A: SURVEYED SYSTEMS ... ,.., 124

APPENDK B: MAPPING BETWEEN PLAN STEPS AND TACTICS .,....„ 126

APPENDK C: TACTICS AND IMPLEMENTATIONS .„...„„„.... 127

APPENDDC D: RESPONSE GOAL CLASSIFICATION MATRIX „„.....„„.. 128

APPENDK E: SUSPICION MATRDC ... 137

APPENDIX F: TIME OF ATTACK MATRK ..„....,„„..... 142

APPENDDC G: TYPE OF ATTACKER CLASSMCATION MATRK..,.,,,.. 146

APPENDK H: TYPE OF ATTACK CLASSIFICATION MATRK.............. 151

APPENDK I: ATTACK IMPLICATION CLASSIFICATION MATRK...... 157

APPENDK J: CD-ROM INSTRUCTIONS.................161

VITA..162

xu

LIST OF TABLES

TABLE

1 Comparison oflDSApprow^hes.......,..„,„...„.„,,..„.

Page

.11

2 Classification of Existing Intrasion Response Systems„„..„.....„. 20

3 Characteristics of Software Agents

4 Session Identifier Decision Table.........,....,..........,.....,.„„„„^

5 Master Analysis Agent Decision Table............................„.„.,„.,„., _, gO

6 Relationship between System Criticality and PTI Deployment....................... 86

42

79

XIU

LIST OF FIGURES

FIGURE

1 Number of CERT Reported Incidents per Year

2 CSM Architecture............

3 EMERALD Architecture..

4 Ji-Nao Architecture ..

5 NetSTAT Architecture

6 Protection Analysis Taxonomy

7 RIOS Security Flaw Taxonomy................................

8 Landwehr Security Flaw Taconomy (Flaw by Genesis).....................

9 Landwehr Security Flaw Taxonomy (Flaw by Time of Introduction).

10 Landwehr Security Flaw Taxonomy (Flaw by Location)....................

11 Aslam Security Flaw Taxonomy...

12 Lmdqvist Intrusion Technique Taxonomy..

13 Lindqvist Intrusion Result Taxonomy

14 Fisch DC&A Intrusion Response Taxonomy

15 Partial Representation of Carver hitrasion Response Taxonomy......

16 Methodology.. ""•...• •"••"——•""

17 AAIR Prototype System

18 IDS Functionality ...•...."••.•...

19 Interf^e Agent Functionality...

20 M^ter Analysis Functionality ..

Page

...... 2

......22

......24

......25

.......27

.......28

.......31

.......32

„„...33

.......34

.......36

........38

 ...39

........41

........46

........50

........73

75

.........77

.........81

XIV

FIGURE Page

21 Building a New Plan...85

22 Plan Adaptation...89

23 Policy Constraint GUI ..94

24 AAIR GUI Components ...„,..........„96

25 Enhanced Interface Agent Architecture.. 109

26 Network Architecture Exteiwion.110

CHAPTER I

INTRODUCTION

A. Motivation

The number of information warfare attacks is increasing and becoming

increasingly sophisticated. Annual reports from the Computer Emergency Response

Team (CERT) indicate a significant increase in the number of computer security

incidents each year. Figure 1 depicts the rise of computer security incidents with six

incidents reported in the 1988 and 8,268 in 1999 [1]. Not only are these attacks

becoming more numerous, they are also becoming more sophisticated. The 1998 CERT

Annual Report reports the growing use of "widespread attacks using scripted tools to

control a collection of information-gathermg and exploitation tools" [2]. The 1999

CERT Distributed Denial of Service Workshop likewise reports the growing use of

automated scripts that launch and control tens of thousands of attacks against one or

more targets. Each attacking computer has limited mformation on who is initiating the

attack and from where [3]. The threat of sophisticated computer attacks is growmg.

Unfortunately, intrusion detection and response systems have not kept up with the

incre^ing threat.

IEEE Transactions on Automatic Control is med as a pattern for format and style.

9000
8000
7000
6000
5000
4000

Incidents

T 1 1 1 r

1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

Year

Figure 1: Number of CERT Reported Incidents per Year

Current intrasion detection systems (IDS) have limited response mechanisms that

are inadequate given the current threat. While IDS research has focused on better

techniques for intrusion detection, intrusion response remains principally a manual

process. The IDS notifies the system administrator that an intrusion h^ occurred or is

occurrmg and the system administrator must respond to the intrasion. Regardless of the

notification mechanism employed, there is a delay between,detection of a possible

intrasion and response to that intrusion.

This delay in notification and response, ranging firom minutes to months,

provides a window of opportunity for attwikers to exploit. Cohen explored the effect of

reaction time on the success rate of att^ks using simulations [4]. The results indicate

that if skilled attackers are given ten hours after they are detected before a response, they

will be successful 80% of the time. If they are given twenty hours, they will succeed

95% of the time. At thirty houre, the att^ker almost never fails. The simulation results

were also correlated against the skill of the defending system administrator. The results

indicate that if a skilled attacker is given more than thuty hours, the skill of the system

administrator becomes krelevant - the attacker will succeed. On the other hand, if the

response is instantaneous, the probability of a successfiil attack against a skilled system

administrator is ahnost zero. Response is a fundamental factor in whether or not an

attack is successful. An automated intrusion response system provides the best possible

defense and shortens or closes this window of opportunity until the system administrator

can take an active role in defending against the attack. Unfortunately, no such response

system exists.

B. Research Objectives

The overall intent of this research is to develop an intrusion response

taxonomy and a methodolo^ for automatic offensive and defensive response. This

methodology will support the automatic defense of computer systems through an

autonomous, agent-b^ed adaptive architecture. The following research objectives

will accomplish this intent:

■ Research and develop a taxonomy of intrusion responses b^ed on:

■ Type of attack using the Confidentially/Integrity/Availability (CIA)

model for classification of attack.

■ Type of attacker.

■ Timing of response.

■ Implications of the mack.

■ Strength of suspicion.

■ Environmental constraints (legal, ethical, resource-based).

■ Develop a methodolo^ for responding to an intrusion that includes:

■ A hierarchical organization of software agents, including:

■ M^ter analysis agents that correlate incidents with ongoing

attacks and pass the incident to the responsible analysis agent

or launch new analysis agents when new attacks occur.

■ Analysis agents that analyze an attack over the life of the

attack and develop a couree of action to response to the attack.

Once a course of action is determined, the analysis agent

launches the appropriate response toolkit agents (simulated).

■ A formal reasoning mechanism to provide for adaptation of the

response.

■ Develop a prototype system to demonstrate the feasibility of this appro^h.

C. Overview

Chapter 11 presents a review of the current literature relevant to the domains

involved in this research. The purpose of Chapter II is to describe work that has been

done to date and to provide background and motivational material for this research.

Domain are^ of interest to this dissertation are IDS, intrusion response systems (IRS),

security taxonomies, and artificial intelligence (specifically expert systems and software

agents).

Chapter III describes the proposed methodology for responding automatically to

computer attacks. This chapter describes the various components of this methodolo^,

paying particular attention to those components that have been prototyped.

Chapter IV gives details of the implemented prototype - the Adaptive, Agent-

b^ed IntriKion Respoiwe system (AAIR). It describes the inter^tions of these

prototype components and the performance of the overall system.

Chapter V describes the verification and validation procedures used to confirm the

correctness and effectiveness of the prototype. Chapter V also describes some

experiments conducted to demonstrate that the software agents perform as designed

(verification). Finally, Chapter V describes the results of this research.

Chapter VI presents the major conclusions of this research, reasserts the

contributions of this research to the field, and makes recommendations for future

research.

CHAPTER II

LITERATURE REVIEW

A. Introduction

The development of an intrasion response system requires the discussion of a

number of different domains including intrusion detection systems, intrusion response

systems, security taxonomies, and artificial intelligence (specifically software agents).

Intrusion response systems (IRS) are dependent on intrusion detection systems (IDS) in

two respects: (1) IDS detect the intrusions that the IRS must respond to and, (2) IDS are

imperfect which requires IRS to adapt the respome based on its confidence in the

detection capabilities of the IDS. There has been previous research in IRS as all IDS

contain some intrusion response component ranging fi-om report generation to automatic

defense of the system. Unfortunately, intrusion response has rarely been discussed by

itself Instep, most research has fociwed on the detection of intrusions with intrusion

response being left as the responsibility of the system administrator. As a result, the

mtrusion response mechanisms within these systems are limited. Similarly, security

taxonomy research h^ focused on the development of security flaw taxonomies and not

security response taxonomies. A response taxonomy provides the theoretical framework

for classifymg responses and as such is an important component of this research. Finally,

while there is a rich body of research on artificial intelligent and software agents, this

research has not been applied to tiie problem of automated intrusion response. Each of

these domains will be diseased in sufficient detail to provide a background for this

research.

B. hitrusion Detection Systems (IDS)

1. Historical Perspective

Andereon introduced the concept of intrusion detection in 1980. He defined an

intrusion as "an unauthorized attempt to access or manipulate information, or to render a

system unreliable or imstable" [5]. His paper went on to define several terms in computer

security and classify six categories of intrusive activities and how these activities might

be detected: attempted break-ins, m^querade attacks, penetration of the security control

system, leakage, and denial of service. The detection mechanisms recommended

included monitoring unusual behavior profiles, uncommon uses of system resources, and

monitoring for specific pattern of activity [5]. These recommendation led to the

development of two of the three principal approaches, anomaly detection and misuse

detection in intrusion detection systems.

Anderson also created a taxonomy of system intruders whom he divided into

internal and extenml intrudere. Internal usere are fiirther divided into masqueraders,

misfeasors, and clandestine users. M^quer^ere are attackers that exploit mer accounts

and ^sociated privileges. Misfeasors are legitimate users that use their privileges to

participate in illicit wstivity. Finally, clandestine users are attackers that gain supervisory

control of the system [5], Anderson introduced the concepte and terminology that

provided the early theoretical foundations for IDS.

Denning extended Anderson's work in 1987 through the introduction of a generic

intrusion detection model [6]. Denning's model is composed of six components: subjects,

objecte, audit records, profiles, anomaly records, and activity rules. Subjects are the

initiatore of activity and each subject has an associated profile that characterizes that

subject's behavior. Subjects utilize objects which are system-managed resources. The use

of these resources generates audit records, which can be compared against subject

profiles. If there is a significant deviation between the audit record and subject profile,

the system generates anomaly records. The activity rules contain the rules used to

determine what action to execute when the system generates an audit or anomaly record,

or a time period ends [6].

While Denning focused on a generic model, she also provided a broad

fiamework for fiiture intrusion detection research. Anomaly detection is discussed in

detail widi a nimiber of metrics and statistical models for evaluating these metrics.

Misuse detection is introduced and some of the disadvantages with misuse detection are

discussed in the context of why misuse detection was not included in the Intrusion

Detection Expert System (IDES). Denning's work spurred interest in intrusion detection

fi-om which a variety of IDSs have been developed.

There are three broad approaches for intrusion detection: anomaly detection,

misuse detection, and specification-based detection. In practice, none of the three are

sufficient for a robust intrusion detection system - a combination of two or all three

approaches is necessary. The characteristics and limitations of these approaches are

discussed below.

2. Anomaly Detection

Anomaly detection is b^ed on the premise that intrusions are a subset of

anomalous activity. Anomaly detection IDSs monitor user activity and report significant

deviations jfrom normal activity as intrusions. Monitoring can be at a system or user level

and consists of comparing activity against a user profile. The user profile is a collection

of metrics such m average CPU lo^, number of processes, login time, or number of

network connections that characterizes user activity. Threshold levels are set for these

metrics, and activity above these thresholds are characterized as intrusions [6],

Because intrusions are a subset of anomalous activity, it is possible to flag an

anomalous activity as intrusive when it is not (false positive), or to ignore intrusive

behavior because the anomaly detection system does not coiwider it abnormal (false

negative).

There are a number of compromises involved in building anomaly detection

systems. The effectiveness of the system is dependent on the number of metrics

monitored and the fi-equency at which these metrics are monitored. The accuracy of the

anomaly detection increases m the number of metrics and fi-equency of monitoring

incre^es. The system requiremente of die anomaly detection system likewise increase

requiring a compromise between system performance and model accur^y.

10

3. Misuse Detection

Misuse detection is b^ed on the premise that all intrasions have a distinct

signature that can be detected. Misuse detection systems maintain a collection of attack

signatures and monitor the system for an attack. If user or system activity matches a

signature, then the system reports an intrusion.

Misuse detection systems can report false positives and negatives like anomaly-

b^ed systems. If a signature matches normal user activity m well as intrusive behavior,

then a false positive is reported. If a new attack is developed for which an attack

signature does not exist, then a false negative will occur.

4. Specification-b^ed Detection

Specification-based detection focuses on expected system behavior instead of

user activity. System behavior is formally specified for all circumstances and a profile is

developed. The system is then monitored and all its actions are compared against the

profile; system behavior that is not specified as correct is flagged as an intrusion [7].

A possible implementation of specification-based detection system is the use of a

special policy specification language. This specification language would stipulate

security policy by assigning access privileges to each file in the system.

Specification-b^ed detection systems can have false negatives but if system

behavior is specified accurately, there are no false positives. False negatives can occur

when the system specification does not cover all possible system states. False positives

can only occur if the system behavior is not specified accurately.

11

Approach
Anomaly

Misuse

Table 1; Comparison of IDS Approaches

Specification

Advantages
Can detect new attacks
without reprogramming.
Few false negatives.
Few false positives

Potentially no false positives

Disadvanteges
Potential for many false positives.
IiKiders can train user model to classify
intrusive behavior as normal.
Potential for many false negatives due to
vulnerabilities to imknown attacks.
Easy to mask attack
Very difficuh to specify all system states.

5. Comparison of IDS Appro^hes

IDS approaches address different types of intruders. Anomaly systems detect

marauders better than misuse systems under the ^sumption that the marauder's usage

pattern is significantly different from the user. Misuse systems can detect misfeasors

while anomaly systems are generally ineffective because misfeasors can train the

anomaly detection system to consider intrusive behavior as "normal" for the user over

time. Both anomaly and misuse have limited utility against a clandestine attacker. Once

an intruder has supervisory permission on a system, detection becomes very difficult as

the skilled clandestine attacker can alter all logging and audit mechanisms to cover his

intrusion. No current IDS approach is sufficient for detecting all intnaions. Instead, a

combination of approaches is necessary to protect against different types of attacks (See

Table 1.

Patterns of usage also influence the effectiveness of a particular IDS approach, ff

the mers are in a production envkonment where they repeatedly use a limited subset of

commands in a particular order, anomaly detections work extremely well. If the users

12

use tiie system infrequently or have no set pattern of usage, then misuse detection

systems tend to outperform anomaly detection systenw.

Table 1 summarizes the advantages and disaivantages of each intrusion detection

approach. Most IDS implement a combination of approaches to balance the advantages

and disadvantages of each approach.

6. IDS Classification Techniques

There are a number of classification techniques that can be used within intrusion

detection approaches. These techniques classify events as either intrusive or normal and

include statistical analysis, predictive patterns, state transition, expert systems, neural

networks, machine learning, pattern matching, graph-based, and model-b^ed

approaches. This section will examine these techniques.

a) Statistical Analysis: Statistical analysis is an anomaly detection technique that

uses differences in the volume and ^e of audit data to detect intrusions. This is

one of the earliest forms of intrusion detection and has been used in a large

number of IDSs. There are three forms of statistical analysis i^ed for intrusion

detection: tiireshold detection, profile-based, and keystroke monitoring [8].

Threshold detection uses summary statistics on system and user activities to

detect intrusions. The parametere of a threshold detection system are: what

activity should the IDS measure and monitor; how often should the IDS perform

analysis on this me^urement; and what level of activity is considered intrusive.

As the first two parameters are increased, the system resources required of the

13

threshold detection increases. The third parameter, the threshold level, depends

on tiie relevance of the security event being monitored and directly affects the

number of false positives and false negatives reported by the system. As the

threshold is lowered, the probability of false positives increases and false

negatives decreases. As the threshold is raised, the converse occure and the

probability of false positives decre^es and the false negatives incre^es [8].

Profile-b^ed detection is based on estabUshing patterns of normal behavior for a

user or system and then classifying significantly deviant behavior as intrusive. It

differs from threshold detection in that it employs patterns of laage instead of

summary statistics to determine if an intrusion h^ occurred. The patterns

mamtamed by the IDS are wiaptive m that they change over time to reflect the

usage patteriK of e^h user accurately [8].

Keystroke monitoring is a misme detection technique that monitors sequences of

keystrokes for att^k pattern. This is a very simpUstic technique that can be

e^ily evaded through the iwe of user-defined aliases or the running of intrusive

programs that require non-intrusive keystroke entries [9]. While this technique

was used in earlier systems, it is seldom used in modem IDS.

b) Artificial Intelligence Techniques: Artificial intelligence techniques are the

most commonly used techniques for classifying intrusive behavior. These

techniques are also one of tiie earliest forms of intrusion detection and has been

used in almost every IDS. There are four principal artificial intelligence

14

techniques used for intrusion detection: expert systems, predictive patterns,

neural networks, and macliine learning.

Expert systems liave been and continue to be the most popular intrusion detection

techniques employed. Expert systems use rules in anomaly or misuse systems to

detect attacks. In anomaly detection systems, the rules specify usage patterns

b^ed on selected iwer metrics. In misuse detection systems, the rules stipulate

specific types of known attacks. Expert system rules are typically implemented

as a series of if-then statements. The principal advantage of expert systems is the

separation of control re^onmg (is this an attack?) from the formulation of the

solution to the problem (system response to the attack). The disadvantage of

expert systems is that they require a great deal of initial traming and high

mamtenance during their lifetime. The mitial rule-base must be generated by an

expert which is time-intensive and expensive. Because not every expert knows

every vulnerability in a system, tiiere is the veiy real chance that ihe initial

configuration does not capture all possible vulnerabilities. As new attacks are

developed, the expert system must be manually updated to capture the

characteristics of the new attacks.

Predictive pattem-b^ed detection is an anomaly detection technique that

attempts to predict future events based on events that have already occurred.

Event sequences are represented m a statistically weighted set of rules b^ed on a

user profile. If user actions match n-1 evente and the n* event is statistically

anomalous, then the system reports an intrusion. Predictive pattern systems

15

constantly update user profiles and prune the rule set to maintain high quality

patterns of user activity [10].

Neural networks are an anomaly detection technique that trains a neural network

to predict a user's options given a window of n previous actions. The network is

trained through a user profile of representative user commands. If a user's actions

are significantly deviant fi-om the user profile as maintained by the neural

network, the system reports an intmsion [l I].

Machine learning is an anomaly detection technique that compares the user-input

stream with a historical library of user commands to detect anomalous behavior.

In one approach, the mput stream is broken into fixed length sequences (normally

8-12 command tokens) which are compared through a sliding window against a

library of 500-2000 user sequences. The library is unique for each user. The

result of the comparison is a similarity measure. If the similarity me^ure is

greater than threshold level, then the user activity is characterized as abnormal;

otherwise, user activity is classified as normal [12].

The selection of several parameters greatly influences the effectiveness of a

machine learning system. The optimal sequence length appeare to be 8-12

command tokms. Shorter sequences provide low detection rates while longer

sequences increase the false positive rate and provide lower intrusion detection

rates. The sliding wmdow size determines the shortest interval in which the

system can detect an mtruder. Experimental results also suggest that: the ideal

library size is user dependent; as the size of the library increases, the number of

16

false positives also increases; and, the method of pruning the libraiy significantly

impacts on the effectiveness of the overall system [12].

c) Graph-based Techniques: Graph-b^ed techniques are misuse systems that

represent user and system behavior as a set of graphs that are then compared to

attack signature graphs to detect intrusions. This is a relatively new intrusion

detection technique and h^ been used in a limited number of IDSs, There are

three graph-b^ed techniques used for intrusion detection: state transition

analysis, pattern matching, and model-b^ed detection.

State transition detection is a misuse detection technique that models a host as a

state transition diagram. It was used m the basis for the USTAT system [13].

Known attack patterns are encoded m states in the diagram with the final state in

a chain beuig the compromised state. The preceding states are known as guard

states. The guard stetes act as a filter to separate normal from intrusive activities

[13].

Pattern matching detection is a misuse system that represents known attack

signatures m patterns that are compared against audit records. Knowledge about

attacks is represented as a set of specialized graphs. The graphs represent the

transition from normal system states to compromised states and are an adaptation

of colored Petri nets. This technique is similar to the state transition technique,

but pattern matching ^sociates guards with transitions, rather than with states.

This technique has been implemented in the Intrusion Detection In Our Time

17

(IDIOT) system in which pattern matching is used as the basis for a generic

misuse detection model [9,14].

Model-based detection is a misuse detection technique that detects attacks

through observable activities that infer an attack signature. Model-based

detection h^ three components: an Anticipator, Planner, and Interpreter. The

Anticipator uses two types of models, activity models and scenario models, to

predict the next expected step in an attack scenario. Activity models are

representations of current activity while scenario models represent intrusion

signature specifications. The Planner takes the Anticipator's prediction as a

hypothesis and translates it into audit log format. These predicted audit entries

are then used by the Interpreter as search strings in the audit records. If the

model-based detection system accumulates sufficient evidence of an intrusion by

crossing a system-defined threshold, the system reports an intnwion attempt [15].

d) Information Retrieval Techniques: Information retrieval, m used in intriBion

detection, is a misuse detection technique that searches for attack patterns by

building an mdex of audit logs and then searching Ms index. The information

retrieval system miwt maintain the audit index by periodically rebuilding the

index as new audit records are generated. There are a variety of techniques for

building, searching, and storing indexes that result in different tradeoffs in terms

of false positives and negatives [16].

18

e) Positive Behavior-Based Detection: Positive behavior-bMed intrusion

detection is a specification-based technique that specifies intended system

behavior and reporte activity outeide of this intended behavior [7], This is one of

the newest approaches to intrusion detection. There are two forms of positive

behavior-b^ed systems used for intrusion detection: specification-based and

transaction-based detection.

Specification-based detection uses a program behavior grammar to enunciate

intended behavior and then scans audit files for violations of this expected

behavior. For example, the finger daemon in Unix should only execute the finger

program and should only read a very limited subset of files that can be easily

specified. If the finger daemon attempts to read the system password file, this

violates program specification and an intrusion would be reported [17].

Trans^tion-bMed detection is a specification detection technique that delineates

allowed actions and sequences of actions through transaction management. User

Mtivity is modeled as a series of read and write operations. The transaction-based

detection system checks to ensure that all transactions are:

■ Atomic (all operations are completed).

■ Consistent (system remains in a consistent state).

■ Isolated (transactions do not interfere with other transactions).

■ Durable (transaction results are saved in permanent storage) [18].

19

As with the intrusion detection approaches, there is no one technique that

provides complete security. As such, most modem IDSs employ two or more techniques

to detect intrusioiw.

7. Host and Network-based Intrusion Detection

In executing the approaches and techniques discussed above, the IDSs can be

either host-b^ed, network-based or a combination of both appro^hes. Host-b^ed IDSs

monitor activity on a single computer using the host computer's audit information for

analysis and detection. Network-based IDSs monitor network traffic to detect intrusions.

Network-based IDSs are significantly more difficult to implement. From a bit stream

representing network traffic, they must reconstruct connection, session, and application

level traffic for all of the hosts on the network and detect intrusions in real time.

Both host-b^ed and network-based IDSs suffer fi-om a number of ^vantages

and disadvantages. Host-based IDSs are typically e^ier to implement than network-

b^ed IDSs. However, host-based IDSs consume system resources that could be used for

other user activities. Network-b^ed systems do not consume user computing power but

instead limit the impact of the IDSs to network bandwidth and the allocation of

dedicated intrusion detection machines. Host-b^ed detection is more readily subverted

^ it is an active agent that can be detected and attacked. Detection systems are prime

targets for attackers. Network-based IDSs are more secure as they collect information

passively and are more difficult for attackere to detect and defeat. Finally, host-based

systems have limited visibility over intrusions that involve multiple hosts. This is a

significant shortcoming as a number of common attacks are based on limited attacks on

20

Table 2: Classification of Exkting Intrusion Response Systems

Intrasion Response Classification # of Systems
Notification 30

Manual Response 8
Automatic Stateless Respome 18

Total 56

multiple hosts. Network-based IDSs can detect multiple host intrusion attempts due to

their greater visibility. Because of the limitetions of both appro^hes, most IDSs use

both host-based and network-based detection systems to provide more robust intrusion

detection. No IDSs detects all intrusions and as such, IRSs mmt temper intrusion

respoiKC generated with their confidence in the IDSs.

C. Intnwion Response Systems

1. Introduction

In the p^t seventeen years, a number of intrusion detection and intrusion

respome tools have been developed (See Appendix 1). The response systems can be

categori^d as notification systems, manual response systems, or automatic respoiKe

systems (See Table 2). The majority of intrusion detection and response systems are

notification systems only - systems tiiat generate reports and alarms only. Periodic

reports were the earliest form of intrusion response. Rangmg in fi'equency fi-om daily to

monthly, reports record suspicious mers so that the system administrator could fiuther

investigate potential intn^ioM. The firequency of reporting delimits the window of

opportunity for an attacker. In today's environment, this window of opportunity is too

21

large. Reporting, while still an important component of any intrusion response system, is

not a viable means of intn^ion response by itself Alarms generate immediate messages

to alert the system admmistrator to potential mtrusive behavior. Alarms can be presented

in a variety of formats including email messages, coMole alerts, and/or pager

activation. After notification, fiirther intrusion response is left as the responsibility of

the system administrator.

Some systems provide the additional capability for the system administrator to

initiate a manual response fi-om a preprogrammed set of responses. While this capability

is more usefiil than notification only, there is still a time gap between when the intrusion

is detected and when the system administrator initiates a response. This window of

exploitive opportunity is still too large.

Automatic response systems immediately respond to an intrusion and it is these

systems that are most germane to this research. A survey of research literature found

eighteen systems with automated response mechanisms. Fourteen of the systems with

automatic respoiKe capabilities ^sociate a specific response with a specific attack with

no other formal reasoning capability other than the association. Four systems.

Cooperating Security Managere (CSM), Event Monitoring Enabling Responses to

Anomalous Live Disturbances (EMERALD), JiNAO, and Network Statistical Analysis

Tool (NetSTAT) provide more robust intrusion response mechanisms through the use of

decision components.

22

Command
Monitor

User
Interface

i I

''

LocailDS Security
Manager

1 '

Intrusion
Response

Other
CSMs

Figure 2% CSM Architecture

2. CSM

Cooperating Security Managers (CSM) is a distributed and liost-based intrusion

detection and respome system (See Figure 2). CSM architecture consists of five

components:

■ Command Monitor: captures users commands and sends tliem to the Local IDS.

■ Local IDS: a host-b^ed detection system that looks for intrusions on the local

system,

■ Security Manager: examines network-related commands and coordinates with

other CSMs to track connection and user activity.

■ User Interface: provides die capability for the system administrator to query the

Security Manager on the current security status.

23

■ Intruder Handler: responds to detected intrusive behavior.

For every user and for the overall system, CSM maintains a suspicion level

which indicates CSM's belief that a user is performing intrusive activity. If an intrusion

is detected by the Local IDS or Security Manager, the Intruder Handler reacts to the

intrusion by taking a preprogrammed action. At a minimum, the system administrator is

notified. Dependmg on the intrusion, the intrusive session may perform a number of

actions including terminating the current session or locking the user's account.

CSM provides automated responses through the Intruder Handler which consists

of three different components: the Command Auditor, the Damage Control Processor

(DCP), and the Damage Assessment Processor (DAP). The Command Auditor examines

user command streams and automatically discards commands that it identifies as an

attack. The DCP reactively responds to intrusive behavior using: (1) the Fisch Damage

Control & Assessment (DC&A) taxonomy (See figure on page 41) to classify the attack;

and (2), the suspicion level assigned to a met by the intrusion detection system. As the

suspicion level changes, the DCP employs eight different response sets, each of which

consists of one or more of fourteen different response actions. DCP continues to

respond to intruder actions until the intruder leaves the system when their suspicion level

is reset to zero [19,20].

After the intrader leaves, the DAP attempts to restore the system to its pre-attack

state and performs an attack analysis. Like the DCP, the DAP has eight response sets

that it uses to restore the system. These response sets are associated with suspicion levels

generated by the DCP. System restoration includes such actions as replacing modified

24

-M E

E - Entoprise Monitco^
D - Domain Memitors
S - Service Monitors

Mwdtor

R^oIvK-

Tar^ Specific
R^ource Object

Signature
Bigine

Figure 3i EMERALD Architecture [21J

files, removing new files, reconstructing system settings, and securing vulnerable user

accounts [19,20].

3. EMERALD

The Event Monitoring Enabling Responses to Anomalous Live Disturbances

(EMERALD) is a distributed misuse and anomaly intrusion detection system (See Figure

3). The Emerald architecture consists of hierarchical collection of enterprise, domain,

and service monitors and is intended for large-scale heterogeneous computing

environments. There are four principal components in the each monitor:

■ Profiler Engine: a statistical anomaly detection component.

■ Signature Engine: a signature -based inference component.

25

Figure 4J Ji-Nao Architecture

■ Resource Object: a pluggable configurable library with all of the data for the

other three components.

■ Resolver: a coordinator of analysis and response policy enforcer.

Intrusion response is provided through the resolver. The resolver is an expert

system that receives reports from the analysis components and invokes varioiw response

handlers. The possible responses are defined in the resource object with two associated

metrics that delimit their usage: a threshold metric and a severity metric. The threshold

metric defines the degree of intrusive evidence necessaiy to use the response. The

severity metric defines how harsh a particular rjesponse is. Because of the system

architecture, eveiy monitor has an intrusion response capability [21,22].

26

4. JiNao

JMm is a misuse and anomaly-based intrasion detection system that attempts to

detect attacks against the network infrastracture (See Figure 4). The JiNao architecture

consists of two principal components: the Local Subsystem (LS) and Remote

Management Subsystem (RMS). Each LS protects a single router or switch and consists

of five components:

■ Interception/Redirection Module: a routing component that redirects target

protocol information flows to the prevention module,

■ Prevention Module: a small-rule-based system that filters packets with clear

security violations before the prckets are processed by a router or switch.

■ Local Detection Module: an expert system to detect attack signatures as well as a

statistical analysis subsystem to detect anomalous behavior.

■ Local Decision Module (LDM): the coordinator of the prevention module and

local detection modules as well as the automated intrraion response component.

■ Information Abstraction Module: interface component for the LS to other LSs

and RMSs.

Each RMS comists of three components: a statistical analysis module, a protocol

analysis module, and a management interface. RMSs coordinate the Mtivities of several

LSs and provide a set of management applications for the system aiministrator.

JiNao also supports intrusion response through reports, alarms, and automated

response. Reports and alarms can be delivered through email or the JiNao GUI. The

LDM may take automated defensive measures if an intrusion is suspected or detected by

27

Figure 5; NetSTAT Architecture

increasing logging, disabling router interfaces, or undoing the efifects of recent route

update changes [23],

5. NetSTAT

Network Statistical Analysis Tool (NetSTAT) is a network-b^ed misuse

intiroion detection system (See Figure 5). NetSTAT represents attack signatures as state

transition diagrams and extends previous research in the use of state transition analysis

from host-based intrusion detection (see USTAT [13, 24]) to support network-based

detection. Probes capture network ttaffic and compare activity against pre-programmed

attack signatures. If an attack is detected, each probe h^ a local decision engine which is

responsible for initiating intrusion response. This response can be in the form of reports.

28

alarms, suggestions for system administrator action, or an automatic response by

injecting datagrams into the network [25,26],

D. Security Taxonomies

A taxonomy is a system with associated rules for classification of events into

categories [27]. There h^ been leseareh into a number of proposed security flaw

taxonomies mcluding the Research in Secured Operating Systems (RISOS) security

taxonomy, the Protection Analysis (PA) taxonomy, Landwehr's taxonomies, Aslam's

taxonomy. Bishop's taxonomy, and the Lindquvist taxonomy. These taxonomies classify

security flaws which are an important component of an intrusion response taxonomy and

as such are diseased below. An intrusion response taxonomy is the categorization of

possible offensive and defemive responses to an intrusion. There h^ been only one

puWished intrusion response taxonomy - the Fisch DC&A taxonomy. The DC&A

Protection Anaylsis Flaw
Taxonomy

Improper Protection
IniUalization and Enlbrcement

' Improper Choice '
[Initial Protection Domain T

Improper Change

Improper Deallocation
or Deletion

Improper Isolation of
Implementation Detail

Improper Naming

Improper Synchronization

Improper Validation

Improper Choice of
Operand or Operation

X
Improper Indivisibility Improper Sequencing

Figure 6: Protection Analysis Taxonomy

29

taxonomy is likewise addressed below.

1. Protection Analysis (PA) Taxonomy

The first published security taxonomy was the Protection Analysis (PA)

taxonomy (See Figure 6). The objective of the PA project was to enable anyone to

discover security errors by using an automated, pattern-matching approach. The

taxonomy w^ based on the examination of over 100 flaws, found in six different

operating systems, which the PA taxonomy categorized into ten categories. These ten

categories were later reorganized into four different global categories:

■ hnproper Protection: This category includes flaws such as: incorrect

installation of software; allowing users to byp^s system controls and

directly manipulate system data structures; "tune-of-check-to-time-of-

use" (TOCTTOU) flaws; allowing different objects to have the same

name; and, leaving old data in deallocated memory.

■ hnproper Validation: This category encompasses buffer overflows and,

those errors that mvolve not checkmg critical parameters and conditions

that lead to system compromise. Buffer overflow attacks are attacks that

attempt to overflow fixed sized data structures in programs. If these data

structures overflow, the program will perform in an unexpected manner

that may lewi to system compromise.

■ Improper Synchronization: This category addressed flaws that allow

interruption of atomic operation or allow actions in an incorrect order.

30

■ Improper Choice of Operand or Operation: This category includes an

application's use of inappropriate operands or operations that leads to

system's compromise.

While this taxonomy provided an initial ctesification of security flaws, the

categories were too broad to be used effectively in an automated system and the same

flaw could be classified m multiple categories. The pattern-matching approach used

resisted automation and the underlying security fault database was never published [28-

30]. The contribution of this study was the introduction of several types of security flaws

that remain relevant. TOCTTOU, allocation/deallocation of residuals, and serialization

errors were introduced and the group's research was an important step in the

classification of security flaws [31].

2. Rises Taxonomy

The Research in Secured Operatmg Systems (RISOS) security taxonomy

categorized operating system flaws found in three operating systems (IBM's OS/MVT,

UNIVAC's 1100 Series Operating System, and the TENEX system for the PDP-1) into

seven categories (see Figure 7):

■ Incomplete Parameter Validation: Parametere must be validated for data

type, number, order, value and range. Failing to check if an array index is

vdthin tiie range of the array is an example of this type of flaw and can

lead to system compromise.

31

RIOS Study

Incomplete
Parameter Validation

Implicit Sharing of
Privileged Data

Inadequate Identification
Authenication/Authorization

Exploitable
Logic Error

Inconsistent
Parameter Validation

Asynchronous Validation
Inadequate Serialization

Violable Prohibition/Limit

Figure 7; MOS Security Flaw Taxonomy

Inconsistent Parameter Validation: Parametere may be evaluated at

multiple locations within a program. If the evaluation criteria are not

consistent, system compromise can occur.

Implicit Sharing of Privileged Data: This category is the use of covert

channels such as sending confidential information by modulatuig the load

average of the system.

Asynchronous Validation/Inadequate Serialization: This category

encomp^ses TOCTTOU errors that introduce a small timing window of

vulnerability that attackers could exploit to compromise the system.

Inadequate Identification/Authentication/Authorization: If a privileged

program does not require a process or individual to authenticate their

32

identity, attackers can exploit this implicit trast relationship to

compromise the operating system.

■ Violable Prohibition/Limit: This category addressed buffer overfl, ow

attacks.

■ Exploitable Logic Error: This categoiy captured errors not addressed by

other categories such as exploitation of instruction side effects. [28,32].

The final report suggested administrative actions that could prevent unauthorized

access to a system and methods to prevent disclosure of information. The principal

contribution of this study was a classification of mtegrity flaws found in operating

systems [31]. The categories, however, remain too broad for use in an automated

system.

ByGaieas

r 1
1 ' , 1

htafuni h*rtent 1
1 -

1
1
1

T
f

1

1

MAiMis
1

N»Mafc»His
; VaiiaiErrar ! OwianEinr
I

i 1
1

1

TrapHw

1

T^door 1 1 1
tomplete

1 1
i I

; 0b]«tRe4)se^ [
r 1

i ^ 1

j RM** ;
CowrtOiami Oier 1 1

1

HoB-Rffcrt'ti

1

Vte

r-^ 1
] BfrtRp, [_

; Starve i
1 1

Tiling 1 ^ _ _ t

1 1 1 SeriiaiMi/iasBg

 TimeBwil)

iHindaiy

Eirors

EAauste

Figure 8: Landwehr Security Flaw Taxonomy (Flaw by Genesis)

33

3. Landwehr Taxonomies

Landwehr proposed three security flaw taxonomies categorizing flaws by

genesis, time of introduction, and location (See Figures 8-10). The objective of these

taxonomies was to describe how security flaws are introduced, when they are

introduced, and where the security flaws can be found. This research also compared the

frequency of security incidents against the taxonomies with the goal of helping software

programmers and system administrators "to focus their efforts to remove and eventually

prevent the introduction of security flaws" [30].

The Landwehr security flaw taxonomy by genesis extended the previous research

of the PA and RISOS groups with the introduction of a new category of flaws,

intentional flaws, hitentional flaws are flaws that are introduced deliberately into a

program so that they can be exploited at a later time. Trapdoors, Trojan horses, time

bombs, and covert channels are examples of intentional flaws. Inadvertent flaws in the

Landwehr taxonomy were shnilar to the flaw taxonomies found m the PA and RISOS

projects. The research found that validation errors were the most common security flaw

followed closely by Trojan horses and domain errore [30].

ByTimeoflnfroduclion

I
During Derelc^ment

X
RequlrementfSpecicatioii/Design

X
During Maintenance

Source Cwie
1

Object Code

During Operations

Figure 9; Landwehr Security Flaw Taxonomy (Flaw by Time of Introduction)

34

The Landwehr security flaw taxonomy by time of introduction characterized

security flaws by when they were introduced into a system (See Figure 9). The

researchers choose an abstract software development life cycle (SDLC) model to which

a variety of SDLC models could be mapped. While other research characterized when in

the SDLC that software defects were introduced, the Landwehr study was the first to

describe when security flaws were introduced. The research found that most security

flaws were introduced during development, followed by flaws during operations. The

least number of security flaws were introduced during system maintenance.

The Landwehr security flaw taxonomy by location characterized security flaws

by where the security flaw occurred (See Figure 10). This taxonomy differentiated

security flaws as either hardware or software and subdivided the software category into

operating system, support, and application flaws. The research found that most security

flaws involve process management or privileged utilities.

I Operating
I System

" —
System

Initialization
Memory

Management

Process
Management

Device
Management

File
Management

Identification
Authenication

Other

By Location
T

Software Hardware !

I
Support

Privileged
Utilities

IIL
Application

Unprivileged
Utilities

Figure 10: Landwehr Security Flaw Taxonomy (Flaw by Location)

35

The Landwehr taxonomies extended security taxonomy research by providing

multiple taxonomies for characterizing security flaws. The realization that security flaws

camiot be simply described by a single attribute was an important contribution and one

that most fottu-e researchers have followed. Of the three taxonomies, only the by genesis

taxonomy is germane to an automatic response tool. However, the genesis taxonomy

requires a determination of intent to classify a flaw which is veiy difficuh for an

automated program to determine and virtually impossible in a real-time enviromnent.

4. Bishop Taxonomy

Bishop studied flaws m the UNIX operating system and proposed a flaw

taxonomy for the UNIX operating system. Rather than describe security flaws using a

single set of categories, Bishop proposed that security flaws should be described using a

single taxonomy that is composed of several collections of categories or axes. The

proposed axes were:

■ Nature of the Flaw: Bishop used the PA taxonomy for this axis.

■ Time of Introduction: Bishop used the Landwehr security flaw taxonomy

by time of introduction but modified Landwehr's definitions of the

categories to more specifically define "during development", "during

operations", and "during maintenance".

■ Exploitation Domain: This axis measures the difficulty of exploiting a

flaw by characterizing whether the flaw can be exploited using a

program, a high-level user command language, or a configuration file.

36

■ Effect Domain: The amount of access the attacker requires to implement

the attack. Bishop divided this axis into four categories: (1) no special

access; (2) network session; (3) physical (hardware) access; and (4)

network sessions and physical access,

■ Minimum Number of Components: The minimum number of components

to exploit the vulnerability is the fifth axis in Bishop's taxonomy and

indkectly measures the difficulty of detecting an attack by measuring the

number of audit records that must be checked to determine that the attack

took place.

■ Source of the Identification of the Vulnerability: Bishop's last category

identified where the flaw was first published. Bishop reasoned that it is

unportant for misuse database compilers to know where to look to find

the mitial source of information on a flaw [28].

Bishop extended security flaw taxonomy research by including a number of

criteria that previously had not been considered.

tor|FtoTwoif

MnoFil

'CiliViibtaita^

BiitfptFffll

liniyCiii

MM

^dimimtoita

AxKsfiii teCfflixi

M(i|

Cifpiite

MUMI

Wiiffltta

lii(irrtP«ite ItagWiKi

1 1

teffisPniim^^

Figure 11: Aslam Security Flaw Taxonomy

37

5. Aslam Taxonomy

Aslam proposed a seemly taxonomy to elassify the faults found in the UNIX

operatmg system (See Figure 11). The objective of this taxonomy was to unambiguously

ctosify security faults and provide a theoretical basis for the data organization of a

vulnerability datable. Selection criteria are provided for each criterion so that all fault

categories are specific and distinct. The Aslam taxonomy contained the following major

categories:

■ Coding Faults: Coding faults are flaws that are mtroduced during

software development.

■ Condition Validation Errors: A flaw is a conditional validation error if

the fault resulte from a missing or incorrect check for limits, check for

access rights, check for valid input, or authentication check.

■ Synchronization Errors: A flaw is a synchronization error if the fault

resulte from improper serialization of operations or the existence of a

timing window between two operations that can be exploited,

■ Emergent Faulte: Flaws that result from improper installation of software,

unexpected integration incompatibilities, and when a programmer fails to

completely understand the limitations of the run-time modules.

■ Configuration Errors: A configuration error occurs if a program is

mstalled m the wrong location, installed with incorrect setup

parameters, or installed with incorrect permissions.

38

■ Environmental Errors: Environmental errors occur when modules

perform according to specification but an error occure when they are

subjected to a specific set of inputs in a particular configuration

environment.

The Aslam taxonomy was used as the theoretical basis for a vulnerability

database that was used in the Intrusion Detection In Our Time (IDIOT) IDS [31,33,34],

6, Lindqvist Taxonomy

Lindqvist and Jonsson proposed two taxonomies that differed from previous

work m that they characterized security attacks based on the technique used and the

NP1. External Misuse

NP3. Masquerading

Pla^a!* \E Spoofing

NP5. Bypassing cxmtrals

Password Attaclts

Capture Guessing

Utilizing Weak
Auttienioation

Spoofing PiMleged
Programs

NP7. Passive Misuse

Manual Browsing

Misuse techniques

Automated Searcliing

I Personal Tool Public Tort

NP9. Indirect Aid in
OttiBT Misuse

NP2. Hardware Misuse

Passive Acttve

NP4. Setting Up
Subsequent Misuse

NP6. AcUve Misuse

rttl I I ExplolHna Inadvertent rJJ Resource Extiaustion
I Write Permissions """^

NP8. Misuse 1rar\ Inaction

Figure 12: Lindqvist Intrusion Technique Taxonomy

39

result of the atto^k. The objectives of Lindqvist and Jonsson research were threefold: (1)

to establish a framework for the systematic study of computer attacks; (2) to establish a

structure for reporting computer incidents to an incident response team; and, (3) to

provide a mechanism for assessing the severity of an attack.

The Lindqvist Intrusion Technique Taxonomy is b^ed on previous research by

Neumann and Parker [35] and divided intrusive techniques into three principal

categories (See Figure 12):

■ Bypassing hitended Controls: This category includes attempts to attack

passwords, spoof privileged programs, and attack programs utilizing

weak authentication.

■ Active Misuse of Resources: This categoiy includes active attacks such as

buffer overflows as well as exploitation of world writeable system

objects.

Intrusion Results

E^tlosure
Confldentiallty Attack

Sensitive Info

UswInte
Disclosed

LD
Unauttiortzed Savice

System
Disposed

UserAaount
Aaess

CliartRoot
Aaass

Special S^tem
AoxHint Access

SwverRost
Access

Erronmjs Output
lnteg% Attack

Selective

Single
User

ffi Group of
Users

TransmBed

Unselective

Denial of Savice
Availability Attack

Selective

Single
User

DJ Gnxjpof
Usere

Traismitted

Unselective

Figure 13; Lindqvist Intrusion Result Taxonomy

40

■ Passive Misuse of Resources: This category includes all probing attacks

that attempt to identify weaknesses in the scanned system [36].

The Lindqvist Intrusion Result Taxonomy is based on the Confidentially,

Integrity, and Availability (CIA) model [36]. It divided intrusion results into three

categories (see Figure 13):

■ Exposure: These are attacks against system confidentially and are

subdivided into disclosure of confidential information and service to

unauthorized entities.

■ Denial of Service: These are attacks against system availability and are

subdivided into selective, unselective, and transmitted attacks.

Transmitted attacks are attacks that affect the service delivered by other

systems to their usere.

■ Erroneous Output: These are attacks against system integrity and are

subdivided into selective, unselective, and transmitted attacks [36].

The Lindqvist Intrusion Result Taxonomy use of the widely respected CIA

model provides a good theoretical foundation for tiie classification of intrusion results.

Intrusion results are an important component of an automatic mtrusion response system

as tiie response should be tailored to tiie attack. As such, the Lmdqvist Intrusion Result

Taxonomy will be included as a component of the AAIR intrusion response taxonomy.

41

7. Fisch DC&A Taxonomy

A review of literature reveals only one intrusion response taxonomy - the Fisch

DC&A taxonomy. The Fisch DC&A taxonomy classified the intrusion response

according to: when the intrusion w^ detected (during the attack or after the att^k); and,

the response goal (active damage control, passive damage control, damage ^sessment,

or damage recovery) [19]. This taxonomy only provided for defemive intrusion

responses and did not categorize offensive responses. It also did not consider the type of

attack, type of intruder, sensitivity of the information being attacked, or environmental

coiBtraints in formulating a response (See Figure 14). While the categories covered by

the Fisch taxonomy should be components of any fiiture intrusion response texonomy,

additional components are necessary to more accurately classify intrusion responses.

Active

Prevent
Action

Fisch
Taxonomy

Danage Control
(Dirlrg Attad<)

Protec*
System

Overt
Actions

Covert
^rtions

Interact with
Intruder

Passive

I Damage Asssessment'
I (After Attach) ,

Assessment Recovery

Figure 14: Fisch DC&A Intrusion Response Taxonomy

42

E. Software Agents

There have been a number of definitions of software agents in tiie past twenty-

five years. Franklin and Graesser described agents through a set of properties rather than

through a general definition (See Table 3). To be considered a software agent, programs

must satisfy the fust four properties and are characterized according to their properties

[37]. For example, this research will employ non-mobile, communicative learning

agents. Gilbert defined agents using three dimensions: agency, intelligence, and

mobility. Agency is the degree of autonomy and authority vested in the agent and can be

mcMured by the nature of interaction with other entities in the system. Intelligence is the

degree of reasoning and learned behavior: the agent's ability to accept user's statement of

goals and carry out the task delegated to it. User model is an indication as well as ability

to learn and wiapt. Mobility is the degree to which agents themselves travel through the

network [38].

Table 3: Characteristics of Software Agents [181

Property
Reactive

Autonomous
Goal-Oriented
Temporally
Continuous
Communicative

Learning
Mobile
Flexible
Clwr^ter

Explanation
Responds in a timely f^hion to changes in the
environment
Exercises control over its own actions
Does not simply ^t m response to the environment
Is a continuoiKly running process

Communicates with other agents, perhaps including
people
Changes its behavior based on ite previous experience
Able to transport itself from one machine to another
Actions are not scripted
Believable "persorality" and emotional state.

43

Russell and Norvig proposed four categories of intelligent agents: reflexive,

reflexive with internal state memory, goal-directed, and utility-based. Reflexive agents

make a predefined, immediate response b^ed on the current environmental state.

Reflexive agents with internal memory supplement environmental state with a memory

of previous actions. Goal-directed agents are agents with multiple and often competing

goals while utility-based agents attempt to maximize a utility function by choosing the

alternative with the highest utility value [39]. With the exception of CSM, all current

intrusion response systems can be classified as reflexive systems or utility-based

systems. There are no intrusion response systems that incorporate goal-directed agents or

a combination of the previously mentioned agent categories. This research addresses

these issues by providing a methodology for reflexive agents with intenwl memory,

utility-bMed, and goal-directed agents to cooperatively respond to intrusive behavior.

Franklin and Graesser, Gilbert, and Russell and Norvig provide just three

definitions of agency. Maes [40-42], Coen [43], Nwana [44], and others have generated

different definitions. For purposes of this research, the characterization approach of

RiBsell and Novig will be used.

F. Agent Communication

There are two main appro^hes to designing an agent communication language

[45]. One approach is based on executable content using programming languages such

as Java or Tel, Agents communicate with their own procedural language that is

understandable by the other agents in the system. When the amount of information that

44

is traiKmitted between agents is relatively small, this approach works well. The second

approach is more declarative and uses popular agent languages such as KQML. This

approach works nicely when large amounts of information need to be transmitted

between agents in a standardized way.

45

CHAPTER III

DESIGN

A. Introduction

The design of an adaptive intrasion response system consists of an intrusion

response taxonomy and an associated methodology. The taxonomy provides a theoretical

cl^sification of responses necessary for an automated system. The methodology

describes the conceptual model of the adaptive intrusion response system. The intrusion

response taxonomy and componente of the methodology are discussed below.

B. hitrasion Response Taxonomy

There are a number of respoMes to an intrusion that range from monitoring the

intrusion to actively attacking the intruder. Not all responses are appropriate for all

intrusions. For example, terminating the att^ker's session after the attacker hM already

logged out will have no effect. As such, there is a need to categorize responses so that

they are appropriate to the attack. A taxonomy is also necessaiy as it provides the

necessaiy framework for automatic intrusion response. Landwehr et al. observed [30]:

A taxonomy is not simply a neutral structure for categorizing
specimens. It implicitly embodies a theoiy of the universe from which
those specimens are drawn. It defines what data are to be recorded and
how like and unlike specimens are to be distinguished.

46

The taxonomy is composed of a number of dimensions where each dimension provides a

categorization necessary for formulating an appropriate response. There are six

dimensions: response tuning, type of attack, type of attacker, strength of suspicion,

unpHcations of the attack, and environmental constraints (See Figure 15),

1. Response Timing

The timing of the response is a fundamental delineation in formulating a correct

response and as such, it is the first dimension of the taxonomy. The response timing may

be defined as preemptive, during an attack (damage control), or after an attack (damage

assessment). Preemptive responses occur when there are indications of an attack but the

attack has not actually begun. Preemptive responses attempt to increase the defensive

posture of the potentially affected system while continuing to provide service to users

with minimal degradation of performance. Damage control responses occur when tiie

X
PreempUve

Canw Taxonomy

::::t:::::
During Attack

n.
After Attack

X
CoiMenBality

.._.L__.

3.-„T,.-..™.,-,'„ i..T..-..T..-„T..-.,-„-,.-„-..- -1 A immg of the Attack I—IT: 1 .."■..............».....................
Int^rity I I Awlability "

--i i Type of Attack

X
Cyber-^angs Economic Rivsas i " Military Oifanizations

Low Suspicion

r
Low Implications

r"l _ _ II ^'9'' ^uspldon

 ' ' Critical Imputations

X
No Ofcnsiw Responses

n
No Router Resets

r..4.Z£^.:;.r„.-.n.LTjie of Attacker

,.......,........„5.?.KS?.,?.f.?."^j?'*^'°'*

Attack Implications

Environmental Constraints

Figure 15; Partial Representation of Carver Intrusion Response Taxonomy

47

attack has been detected and is ongoing. These responses attempt to lunit the effect of

the attacker while continuing to provide service to legitimate users. Damage assessment

responses occur when the attack was detected after the attacker has left the system.

These responses attempt to document and repair any damage to the attacked system.

2. Type of Attack

The type of attack is an important characterization in determining an appropriate

response. For example, the response to a denial of service attack is different from a race

condition attack involving a system utility. There is no attack taxonomy that is both

complete (encompasses all possible attacks) and correct (appropriately characterizes

attacks). The best characterization of the type of attack is the Lindqvist Inttusion Result

Taxonomy [36](see Figure 13). It uses the CIA model as a theoretical basis for

determinmg the type of attack and provides the necessary differentiation between the

types of attacks for automatic intrusion response. As such, it is used as the second

dimension in the intrusion response taxonomy.

3. Type of AttMker

The type of attacker is similarly an essential characterization in determining an

appropriate response to an attack. For example, there is a difference in responding to a

novice attacker using a well-known attack script and a disttibuted, coordinated computer

attack supported with the computational resources of a nation-state. Differentiation

between type of attacker is a difficult task but ftmdamental to the formation of an

appropriate response. The most usefiil distinctions are:

48

■ Is the attacker a novice or expert attacker?

■ Is the attacker using an automated program or is it a manual attack?

Certain techniques such as locking a user Mcount or using remote logging will be very

effective agamst a novice attacker while they will have ahnost no effect against an

expert intruder. Similarly, automated attack programs can be e^ily disrupted by forcing

widitional authentication or similar techniques while they will have limited effect on a

manual attack. As such, the classification of the type of user as a novice/expert and

automated/manual attacker is included as the third dimension of the response taxonomy.

4. Strength of Suspicion

The fourth dimemion of the intrusion response taxonomy is the strength of

suspicion. Current intrusion detection is not an exact science and as a result, intrusion

detection systems can generate false positive or false negative results. Some user activity

is clearly intnwive while other activity may be indicative of mtrusive behavior or may be

normal iwer activity. The response must be tempered by the strength of smpicion that an

actual intrusion is occurring. If the degree of suspicion is low, the response may be

limited to account for the possibility of a false positive detection. If the degree of

suspicion is high, a broaJer range of responses is possible. As such, the strength of

suspicion is a key component of an intnaion response taxonomy.

5. Implications of the Attack

The fifth dimension of the intrusion response taxonomy is the implications of the

attack. Different systems have differing degrees of importance within an organization.

49

ITiis difference in criticality should ie^ to different responses, to the same attwk,

agaiMt different targets. For example, the response should be different if it is a denial of

service attM^k against a single workstation as compared to the same attack against an

institutional Domain Name Server.

6. Environmental Constraints

The final dimension in the intrusion response taxonomy is envkonmental

constraints. There are legal, ethical, institutional, and resource constraints that limit what

responses are appropriate. For example, current U.S. law prohibits launching a

counterattack against a suspected attacker. This constraint does not apply during a

declared war when tiie counteratt^k is part of a military operation. The environmental

constraints are an unportant consideration m the formulation of a response and as such

are included as a dimemion in the intrusion response taxonomy.

C. Methodology

The methodology for adaptive intrusion response is summarized in Figure 16.

Multiple IDSs monitor a computer system and generate intrusion alarms. Interface

agents translate IDS detection messages into a common message format and maintain a

model of each IDS b^ed on number of false positives/negatives previously generated. It

uses this model to generate an attack confidence metric and passes this metric along with

the intrusion alarm to the Master Analysis agent. The Master Analysis agent classifies

whether the mcident is a contmuation of an existing incident or is a new attack. If it is a

50

R^.^pon">.c Inolkit
Monitored Svsteni

S\^t(.m \dmin lool

Interface

M^ter
Analysis

E^
Analysis

Policy
Specification

Response
Taxonomy

Figure 16: Methodolo^

new attack, tiie Master Analysis agent creates a new Analysis agent to develop a

response plan to the new attack. If the incident is a continuation of an existing attack, the

Master Analysis agent passes the attack confidence metric and intrusion alarm to the

existing Analysis agent handling the attack. The Analysis agent analyres an incident

until it is resolved and generates a course of action to resolve the incident. To generate

this course of action, the Analysis agent involves the Response Taxonomy agent to

ctesify the attack and Policy Specification agent to limit the response based on legal,

ethical, institutional, or resource constraints. The Analysis agent also decomposes the

abstract course of action into very specific actions and then invokes the appropriate

51

components of the Response Toolkit. The Analysis agent employs «iaptive decision-

makmg based on the success of previous respomes. Each of the various components of

the methodolo^ is discussed below.

1. Intrusion Detection System(s)

One or more IDS(s) detect intrasions and generate intrusion reports. Because the

focus of this research is on intrusion response and not intrusion detection, this

component is simulated.

2. Interface Component

The interface module performs two fimctions: it translates IDS specific messages

into a generic message format and it maintain a confidence metric on the reporting IDS.

There are two techniques for message formats: a general communications language such

m the BCnowledge Query and Manipulation Language (KQML) or Common Intrusion

Detection Format (CIDF); or, the use of a specialized language [38]. Because the

architecture must interact with a variety of different IDSs, there is no ^sumption of a

common communications language. The interface component provides this translation

service so that all messages internal to the response system are in a common format.

Additionally, due to the requirement for rapid intrusion response, a specialized language

is used internal to the response system instead of a generalized language. In an intrusion

response system, the eflSciency and speed a specialized language provides is more

important Ihan the flexibility and interoperability that a generalized language provides.

52

The interface module also maintains a confidence metric on the reporting IDS,

IDSs are not perfect and will generate false positive and false negative alarms. The

response must be toilored by the degree to which the response system believes that the

reported incident is a real attack and not a false alarm. The confidence metric is the ratio

of false positive reports to actual reports. The number of false positives is generated

through a feedback loop between the interface component and the system admin tool.

After each incident, the system administrator can indicate whether the incident w^ a

real attack or a false alarm. This results in an update to the confidence metric for the

reporting IDS and over time, response adaptation. Responses to incidents fi-om IDSs that

generate a high number of false positives will be less severe than reports from IDSs that

seldom generate false alarms. There is one interface module per IDS and the confidence

metric generated by the interface module is passed to the Master Analysis component.

3. M^ter Analysis Component

The Master Analysis module examines the incident report generated by the

interface component and determines whether the incident is a new attack or a

continuation of an existing attack. If the incident is a new attack, the Master Analysis

component creates a new analysis component and passes to it the incident report and

^sociated confidence metric. If the incident is the continuation of a previously detected

attack, the M^ter Analysis component simply forwards the incident report and

associated confidence metric to the appropriate analysis component.

The cl^sification of the incidents as part of an ongoing att^k or a new attack

requires re^oning under imcertainty. Some incidents such as multiple attacks from the

53

same Internet Protocol (IP) ^dress within a short interval of time provide a clear

indication of the continuation of an existing attack. Attacla such as a distributed port

scan from multiple IP addresses over several days or weeks would be much more

difficult to detect. In determining if an attack is a continuation of the same mack or a

new attack, the Master Analysis component uses three metrics: time, session identifier,

and attack type. If the same attack is launched multiple times in a short period of time, it

is re^onable to ^sume that the attacks are related. To a lesser extent, if the system has

not been attacked for a period of time and suddenly is ^sailed by a number of different

attacks in a short period of time, it can be mferred that the attacks are all part of the same

incident. If the attack is from the same IP address or same subnet as a previous attack,

this is a clear mdication of a continuation of an attack. If the attack is from the same user

there is a clear indication of the continuation of the same attack. Finally, if the same

attack program or process is the source of the incident report, then it is likely that the

attacks are related and part of the same ongoing attack.

It is not the intent of this research to impose a particular inference mechanism

within the Master Analysis module but instep to ^vocate that there must be a

classification of incidents. The prototype Master Analysis componente constructed to

validate this methodolo^ used both crisp and ftizzy rule b^es [46]. Fuz2y rule b^es

have the advantages that it is relatively e^y to capture the knowledge of domam experts

and later verify how the Master Analysis module reached classification decisions.

54

4. Analysis Component

The Analysis module provides long-term analysis of an incident and determines a

plan to respond to an intrusion. This plan consists of a response goal, one or more plan

steps, and Msociated tactics for accomplishing the plan steps. The response goal is

specified by the system administrator and provides a general response approach.

Examples of response goals include: catch the attack, analyze tiie attack, m^k the att^k

fi-om usere, sustain service, maximize data integrity, maximize data confidentiality, or

minimize cost. Plan steps are techniques for accomplishing a response goal. Examples

of plan steps include: gather evidence, preserve evidence, communicate with the

attMker, slow the attack, identify compromised files, notify the system administrator, or

counterattack the attacking system. Tactics are methods to cany out a plan step. For

example, given a plan step of gather evidence, there are a variety of tM;tics for

accomplishing this plan step such as enabling additional logging, enabling remote

logging, enabling logging to an unchangeable media, enabling process accounting,

tracing the connection, communicating with the attacker, or enabling additioiml IDSs,

The tactics can be further decomposed into a number of implementations diat are

environment dependent. As an example, consider a subnet consisting of the machines

Limbo, Saint Peter, and Heaven. If Saint Peter is attacked, the toctic of remote logging

could be implemented by logging to computer system Limbo or Heaven or both. The

analysis agent determines what plan steps, tactics and implementations are appropriate.

The analysis module makes this determination iwing several inputs:

55

Confidence metric: The Analysis component receives the confidence

metric firom the Master Analysis component.

Incident report: The Analysis component receives the incident report

from the M^ter Analysis component and forwards it to the Response

Taxonomy component The Response Taxonomy component mes this

information to weight various response options.

hicident history: The Analysis component mamtains a history of the

incident and forwards this history to the Response Taxonomy component

for proper clMsification. The ^e of attacker dimension, for example,

depends on history of attwks attributed the attacker. The Analysis module

maintains this information and provides to the Response Taxonomy

component as needed.

Response Goal: The system administrator sets the response goal of the

system and the Analysis component uses goal to weight potential

responses. Possible response goals are: analyze the attack, catch the

attack, mask the attack, maximize confidentiality, maximize data

integrity, minimize cost, recover gracefiilly, and sustam service.

Plan history: The Analysis component maintains a history of previously

implemented plans so that it does not implement a plan that had

previously failed.

Policy specification: The Analysis component coordinates with the Policy

Specification component to ensure that the plan being pursued is in

56

compliance with the policy restrictions of the computing environment.

These restrictions include legal, ethical, institutional, and resource-b^ed

constraints.

Given these inpute, the Analysis component develops a response plan. It then

monitors the implementation of that plan and adjusts the plan if necessary. As the

Analysis component receives additional incident reports, it has three options: continue

with the same plan, adapt the plan, or replan completely. Continuation of the same plan

is appropriate when there are mdications that the plan is working or there is not enough

evidence to support a change m plans. Adaptation of the plan is appropriate when there

are significant changes in the environment or significant failures in the plan, Replan

completely is appropriate when adaptation of the plan is not sufficient given the required

changes. If all other measures have failed, the analysis module will shut down the host to

protect the machine until the system administrator can actively diagnose the damage

done to the machine.

Each plan step, tactic and hnplementation (PTI) h^ associated with it a success

metric which is the ratio of successful responses to an intnwion to the total number of

responses iKuig a particular PTI. This metric is updated by the system administrator

after each attack and the system dynamically adjusts what plans are selected to respond

to an intrusion. Those PTI that are more successftil are weighted so that they will be used

more often than PTI that the system administrator determines were not successftil.

57

Plan steps include:

■ Gather Evidence: One of the first steps in any intrusion is to gather

evidence so that the system administrator can identify affected systems

and restore these systems to its pre-attack state.

■ Preserve Evidence: Attackers often attempt to remove an indication of an

att^k from the system log files. The response system can thwart these

attempts through a number of tactics such m logging to an unchangeable

media or logging to a remote machine. This plan step is especially

appropriate when trying to counter the attacks from expert intruders that

have a high probability of removing any traces of their attack.

■ Slow/Stop the AttMk: Every response plan will attempt to either slow or

stop the attack. Determining whether to slow or stop an attack depends on

a number of factors that the analysis and respoiwe taxonomy module must

consider such as the system goal, type of attaiker, and type of attack. If

the system goal were to analyze the attack of an expert attacker, then slow

the attack would be preferred over stopping the attack. If the attacker is a

novice using a simplistic attack and the system goal is to maintain

service, then stopping the attack would be more appropriate.

■ Identify Damaged Files: With some low priority systems, it is easier to

restore the system after an attack then to ty to Mtively defend the system.

This restoration is easier if tiie affected files are identified.

58

■ Protect Critical Files: There are techniques for limiting the damage to

critical files when a system is under attack. Employing these techniques

allows the system to limit potential damage or rapidly restore the system

to its pre-attack state.

■ Notify the System Administrator: Like the gather evidence plan step,

notifying the system administrator is a Wgh-priorify response that is

usually implemented. No matter how good the response system, a skilled

system administrator is Ihe best defense during an attack.

■ Communicate with the Attacker/Employ Social Engineering on the

Attacker: Attackers operate under the assumption that their attack h^ not

been detected or that their identify is protected. These plan steps make it

clear to the attacker that they have been detected and that the system is

being defended. Social Engineering goes beyond normal communication

with the attacker and instead attempts to manipulate the attacker so as to

nullify or lessen the effect of the attack.

■ Counterattack: If not constrained, often the best defense is an oflfeme. If

the attacker can be clearly identified, counterattacking makes the attacker

defend his system and can divert the attention of tiie attacker.

Tactics to achieve the previously mentioned plan steps include:

■ Generate a Report: All intrusive behavior should be logged so Ihat it can

be reviewed by a system wiministrator. These reports provide critical

59

information for the resolution of ongoing incidents and facilitate long-

term analysis of security attacks.

Generate an Alarm: As previously discussed, the success of an attack is

dependent on the time between detection and response. Alarms,

implemented through email messages, console messages, pagers, or even

loudspeaker announcements, notify the system admmistrator that an

attack is underway. Not all intrusive behavior, however, should generate

an alarm. SUDO is an authentication program that allows a normal user to

perform a single command as root. There is a difference, for example,

between a single failed SUDO attempt and one hundred failed SUDO

attempts from the same user. The latter should generate an alarm while

the former probably should not except on the most sensitive systems.

Lock User Account: If a user account has been compromised, an

appropriate response would be to lock that user's account so that it cannot

be used to laimch fiiture attacks.

Suspend User Jobs: If there are indications of intrusive behavior as well

as normal user operation, the suspension of user jobs and termination of

user sessions allows the system administrator the opportunity to terminate

any intrusive jobs while not corrupting valid user tasks. While

termination of user sessiom without suspension of user jobs would be a

more common respome, there are circumstances when it would be

desirable to suspend user jobs.

60

Terminate User Session: If a user is involved in intrusive behavior, the

user's session should be terminated and the user's account locked to

prevent future damage.

Enable Additional Logging: Some met behavior cannot be

unambiguously characterized as intrusive behavior but is nonetheless

indicative of possible intrusive behavior, hi such c^es, enabling

additional logging allows for the gathering of additional information that

may help in classifying the usei's behavior.

Enable Remote Logging: Additional logging may not be sufficient against

certain types of attacks or attackers and instead, remotely logging to

another system or a non-changeable media (such as CD-ROM or a

printer) may be a better technique for gathering additional information on

the attacker.

Block IP Address: If the IP ^dress of an attacking system can be

identified, some network attacks can be neutralized by blocking, at a

router, all traffic fi'om that address. While this protection is often

temporary if the attacker can change then- IP address, it will slow the

attacker and allow the intrusion response system or system administrator

more time to respond to an attack.

Enable additional intrusion detection tools: Because intrusion detection

tools are imperfect and consume ^stem resources, intrusion response

systems may enable additional intrusion detection tools as the degree of

61

siKpicion increases that an intrasion is ongoing. More robust and costly

(in terms of resource utili2ation) detection tools can be employed (up to a

point) as additional indicatore of intrusive behavior are found.

Shutdown Host: Sometimes the only mechanism for protecting against

fiirther system compromise is to shut down the machine. While this is a

draconian measure, it is sometimes the only mechanism for protecting a

host under an active attack.

Disconnect from the Network: For network-based attacks, disconnecting

from the network is less draconian than shutting down the host but h^ the

same effect - network-b^ed attacks can no longer effect the system

allowing the system administrator time to respond to an attack and repair

any damage to the attacked system.

Disabling the Attacked Ports or Services: If a single service or well-

known port is being used m the b^is for the attack, that port or service

can be disabled effectively stopping the attack without affecting any of

the other services offered by the system.

Warn the Intruder: Most attackers operate with the ^sumption that they

are not being actively monitored or that they can evade intrusion

detection systems. Telling the intruder that they are actively being

monitored is all that is required for them to abandon the attack.

Trace connection: Criminal prosecution of computer attackere, while a

viable response to intrusions, is outside the scope of intnaion respome

62

systems. However, tracing by the network connection of an attacker so

that the attacker can be positively identified is a viable response. As a

side effect, the attempt to trace back a connection can be detected by the

attacker. For less experienced attackere, the fact that someone is actively

tiymg to trace them will often result in the termination of the attack.

Force Additional Authentication: Forcing additional authentication slows

down or stops an attack while allowing authorized users to continue to

use the affected system. The suspected intruder must provide additional

proof of their identity before they can execute commands.

Create Backups: Attacks against the integrity of a system can be

thwarted by creating up-to-date system backups for system restoration

and file comparison. While it is often impractical to maintain real-time

b^kups of all modified files, m the degree of suspicion that the system is

being attacked increases, the time interval between backups should be

decreased so as to limit lost or corrupted data.

Employ Temporary Shadow Files: A temporary sh^ow file is a duplicate

file created and encrypted to protect the origmal file. When an intruder

attempts to modify a critical system file, all modifications are saved in a

second file and the original file remains unchanged. Additional

modification attempts result in changes to the temporary shadow file and

not the original file. Fisch proposed temporary shadow files m a

63

mechanism for protecting the integrity of a system while under active

attack [10].

Restrict User Activity: Suspicious users may be restricted to a special

met shell that allows some functionality while limiting the ability of the

iKer to execute certain commands. This will slow the user's ability to

damage the system without terminating a user session, suspending user

jobs, or requiring additional authentication.

Logging to Unchangeable Media: One of the principal targets of any

attMker is the system's log files. By logging to unchangeable media, the

intruder cannot alter any evidence of the intrusion after it h^ been

recorded. This is a viable tactic for preserving evidence.

Process Accounting: Most systems do not routinely employ process

accounting as it has high overhead and imposes a performance penalty on

die host system. This is despite process accounting recording a plethora

of useful information for diagnosing attM;ks. During an attack, however,

the performance penalty is minimal compared to the utility of processing

accounting and as such it is a viable tactic for collecting information on

an ongoing att^k.

Employ a Honeypot: A honeypot attempts to attract the attention of the

attacker so that die attack can be analyzed while protecting a critical

system. High priority systems deploy honeypots all the time to divert

attention away from their critical systems. Low priority systems can

64

deploy honeypote during an attack to redirect attention away from the

protected system.

Employ a Smokepot: A smokepot is a system on your network that any

contact with is indicative of an attack. Smokepots are systems dedicated

to detecting intrusions with no other function than to report contact. Like

a honeypot, a smokepot helps detect attacks and can divert attacks away

from production systems.

Contact Servicing ISP: A tactic for responding to an attack is to contact

the servicing internet service provider (ISP) and let the ISP respond to the

attack.

Turn off Modems: Turning off the modems will limit the ability of an

attacker to reach and corrupt a system. While this might not stop the

attack against an expert intruder, it will likely slow it again an expert and

may stop a novice.

Denial of Service (DOS) Attack: A tactics list would not be complete

without the ability to attack b^k. DOS attacks are very expensive in

terms of resources but can be effective in crippling the ability of an

attacker to affect the protected system.

System Compromise Attack: Similar to a DOS attack, a system

compromise attack attempts to gain control of the attacker's system so

that the attacker can no longer attack.

65

The relationship between plan steps and tactics are listed in Appendix B. The

relationship between tw^tics and unplementations are listed in Appendix C.

5. Response Taxonomy Component

The Response Taxonomy module receives input from the Analysis agent and

determines an initial response weighting. It implements all of the dimensions of the

IntriKion Response Taxonomy with the exception of the environmental constraints

dimension which is implemented by the PoUcy Specification Component (see Section 6

below). In providmg this classification, the Response Taxonomy component does not

maintam state information - the Analysis component does. Everytime there is a new IDS

report, the responsible Analysis component forwards all related state information for the

Response Taxonomy module to reach a response goal classification. This state

information consists of the previous ctesifications of the incident (histoiy of type of

attack, type of attacker, etc) as well as the current incident report.

6. Policy Specification Component

The Policy Specification module performs two fimctions: (1) it maintains any

limitations on response goals and tactics; and, (2) it filters the plans and tactics generated

by the Analysis and Tactics componente. As discussed in Section B.6 of this chapter, not

all responses are appropriate in all environments. The Policy Specification module

provides a mechanism for restricting what responses are implemented m a given

environment. These limitations include are legal, ethical, mstitutional, and resource

constrainte.

66

While environmental constraints are a critical component of any Response

Taxonomy, the separation of policy specification module from the Response Taxonomy

module in system design has two principal advantages. Policy specification is dependent

on the environment in which the response system operates which can vary dramatically.

For example, the response limitations of a small commercial, peacetime organization is

significantly different than those of military organization during a declared war. The

other components of the taxonomy do not vary so vndely. As such, the separation of the

environmental constraints dimension of the response taxonomy from the other

dimensions is preferred. Additionally, poUcy specification may change quickly while the

other dimensions of the response taxonomy do not change over tune. As new response

resources are added to a system or new laws are approved, policy specification must

change to reflect the operational environment of the response system.

The system admmistrator can use tiie System Administiator Interface to enter

response limitations. The Policy Specification component return a set of rules to the

Analysis component that delimits appropriate response goals.

7. Response Toolkit Component

The Response Toolkit module is a collection of executebles and system scripts

that implement the intrusion response. These programs are system dependent and are

invoked by the Taitics component. This separation of the Tactics and Respoiwe Toolkit

component allows the proposed methodolo^ to support multiple system architectures

and provide a separation between the logic and implementation of the respome plan. The

67

Response Toolkit also measures and provides feedback on the success or failure of any

implementations.

8. System Administrator Interface

The System Administrator Interface module provides an interface for the system

administrator to monitor and review incident and associated intrusion responses, suspend

operation of the response system and assume an active role in the defense of the system,

provide feedback to the system for adaptation, set system policy, and add new mtrusion

detection systems and associated interface components. The System Administrator

interface receives reports from the Interface, M^ter Analysis, and Analysis components

on incidents and associated responses. These events are correlated and displayed. After

the security incident is resolved, the system administrator can indicate whether the

intrusion was a real attack or a false positive report and whether the system response was

successful. This allows the Interface component associated with a reportmg IDS to

update the confidence metric Msociated with the IDS and Ihe Analysis and Tactics

components to update their success metrics ^sociated with various plans and

techniques. The system administrator can also set system policy through the interface.

These policy specifications are recorded in the Policy Specification component and are

used to limit what responses the system implements.

68

D. Adaptation of Intrusion Response

The methodology provides response adaptation through two components: the

Literface and Analysis components. The Interface component aiapts by modifying the

confidence metric ^sociated vdth each IDS. After each incident, the system

administrator can indicate whether an incident was an actual attack or a false positive

report. This allows the system over time to ^just the response to an incident based on

the system's confidence in the reporting IDS. Systems that habitually generate false

alarms will result in less severe responses while systems that accurately detect intrusions

will result in more robust responses.

The Analysis component also adapts to provide better intrusion respome than

non-adaptive systems. As the Analysis component receives additional incident reports,

these reports may leal to reclassification of the attack. If significant changes are

detected, replanning takes pl^e to add «iditional PTI to the plan. By changing

techniques with the same plan, the system adapts its approach in an attempt to stop the

intruder. Finally, the Analysis component maintains success metrics on PTI. Those plans

and actions that are successfiil in resolving intrusions are weighted so tiiat they are used

more fi-equently while those plans and actions that are not m successfiil are used less

ofen.

E. Dealing with Uncertainty in Intrusion Response

The methodology ^dresses the inherent uncertainty of intrusion detection and

response, IDSs are not perfect and will generate false reports. IRSs must adjust the

69

response generated to the degree of certainty that the response system has that the

intrusion detection report is valid. The confidence metrics, generated by the hiterface

components, provide a mechanism for mitigatmg tiie effect of uncertainty in IDSs.

The classification of incidents as either a new attack or an ongoing attack is

likewise problematic. Attackere IKC a variety of techniques for maskmg their identity

and these techniques are equally effective in foiling the cl^sification of incidente as

either new or an ongoing attack. An IRS must provide adequate protection to the system

if this ctosification is incorrect by providmg a gradual degradation in response

effectiveness. The response to an incident must be sufficient to limit the effectiveness of

the att^k even if incorrectly characterized by the Master Analysis component. If

incorrectly ctosified, the mcident report is still forwarded to an Analysis module and the

Analysis module still acts on the intn^ive behavior. As such, while there is xmcertamly

in the Master Analysis component, this uncertainty does not invalidate the methodology.

The Response Taxonomy component also classifies incidents using several

dimensions that involve uncertainty. Of the six dimensions of the response t^onomy,

the system administrator specifies two dimensions (implications of the attack and

environmental constraints) and these dimension are assumed to be correct. A third

dimension, timing, is easy to determine and does not mvolve any uncertamty. The fourth

dimension, strength of suspicion, does involve uncertamty but this uncertainty is

addressed by the confidence metric previously discussed. The number of attacks and the

types of attacks is likewise used to develop the strength of suspicion. The final two

dunensions, type of attacker and type of attack, involve significant uncertainty. The

70

cl^sification of type of attacker is dependent on and more difficult than die

classification of a new or ongoing attack in the Master Analysis component. While the

^e of atto:k is founded on a sound theoretical model, there are no specific and

universally accepted rules for attack classification. However, the longer die attacker is in

the system, the more certain the IRS will become of the ^e of attacker and type of

attack. Initial misclassification of the attacker and type of attack will not prevent the

methodolo^ fi'om responding to the attack.

The response to an intrusion has one of three effects: stop the attacker; slow the

attacker; or no effect. None of the responses in this research assist an attacker in

corrupting a computer system. If the response using a misclassification of the attacker

and/or type of attack stops the attacker, the misctesification had no effect and the issue

of type of att^ker and/or type of attack ctosification uncertainty is mute. If the response

using a misclassification of the att^ker/attack slows the attacker, die IRS will gain time

to gather additional information which will lead to a better classification and effectively

defend die computer system until the system administrator can take an active role in the

defense of the system. In short, as long as the IRS stops or slows die attwker, the system

is fimctioning properly.

If the response to the intrusion has no effect, then the proposed IRS has failed

and uncertainty in the Response Taxonomy component may be factor. However, as soon

as a new report is received, the response toolkit reevaluates the ongoing plan to

determine its success. While there is uncertainty, this uncertainty is minimized as the

system adapts it's plan of response.

71

The plan and tactics generated to respond to an attack will not be perfect and

there will be some uncertainty m to which plan or tactic will be appropriate for a given

respome goal. The success metrics, generated by the Analysis component, and the

reevaluation of the success of the plan after each report, provide mechanisms for limiting

the effect of uncertainty in plan and tactics generation.

72

CHAPTER IV

IMPLEMENTATION

A. Introduction

In order to demonstrate the efficacy of this methodology it w^ necessary to

implement a proto^e b^ed upon the design described in Chapter III. This chapter

describes the implemented prototype. Each module of the methodology is described

below. The Master Analysis, Analysis, and Taxonomy agent are the key components of

this proto^e and are discussed in great detail. The prototype components are depicted

in Figure 17.

B. Implementation Overview

The system approach adopted in designing the agents was to opt for simplicity.

The system has been designed to reduce the complexity of each agent and thiw reduce

the amount of information needed to perform a given task. Since each agent requires

only a small amount of information, the communication between the agents is lunited.

Thus, the procedural-based approach using Java to perform all inter-agent

communications is employed in this system.

73

This prototype is written in Java 1.2 and utilizes a Microsoft Access database for

scenario and long-term system parameter storage. Special care was taken to isolate the

scenario and IDS componente of the system from the long-term system parameter

storage so that fiiture vereions of AAIR could be linked to real instead of simulated IDSs

and the system would continue to function correctly.

C. hitrusion Detection System Agent(s)

The intrusion detection systems in this prototype are simulated and are

represented as Java threads. When the user loads a scenario from the AAIR Graphical

*;; Response Toolkit |:;
^-^CVMonitbred

Intrusion Detection
 System

Interface

Master
Analysis

Analysis

Policy
Specification

Response
Taxonomy

Figure 17: AAIR Protofype System

74

User Interface (GUI), all of the events in tiie simulation are loaded into an event list. A

check is made for each event on the list to determine if the IDS detects that event. A

second event list is built for each IDS containing only detected events using the IDS

confidence. These detected events are the events that will drive the scenario.

Additionally, as each intrusion detection system is created, it creates an associated

interface agent to act as ite buffer into the rest of the system. When the scenario is run,

the IDS steps through its detected events list and forwards detected events to its interface

agent.

Several IDS events are displayed in the user interface. Under the scenario

information, the IDS detected events and the actual events in the scenario are displayed.

As each event is clicked on, it is pareed into its component parts and displayed in the

right text pane under parameter explanation. As the scenario runs, ike IDS activity sub-

tree is updated to depict events such as IDS agent creation and reports being sent to the

appropriate Interface agente (Figure 18).

D. Interface Agents

The Interface agents (lA) handle communications with different mtrusion

detection systems (IDS) by parsing the mcident report mto component parts and

maintain a model of each IDS based on the IDS confidence metric. The IDS confidence

metric is the percentage of times the IDS h^ detected an intrusion previously to the total

number of events. Each incident report has the following components:

75

I Adaptlvft ApnWasid Inhision Rmmu System
r« Sctrr: Caxs teglni Hsf

4

IMS

; hittsis
! frflDSMKhd&afe
i j i-f UftBi

J ; j ' tThwMi^iliMttJllilDSffliSMjiislJtopitMUKl

i i-|MiiilB«l* I
i M liiwsfwl»isl.lH)Siii»8M(|8ls1AiiudiO0tmni
! HltamwawtofcillitllimKapfclAijiidaiHilll;!
I r*l«i!ie5sapfwislO.TIielWi«»«pis1J\i(iiiJII0O;lil^~

j rl lii(SSimi»fc1f.ll»WiiBSi«ils1AKiiafflll);iiU
i i-llimKspliMisai!lBii»Mpismip<MII;OIM;

j j-tTlffliii«8aplmlsEl6lBii»ss«j6islAuirtffll);0BS;
; '-♦ l«iiiiisapfti»lsM.iniiMwsspis!ilpst3lil;IIJi;
liSjSHIlMWBill

I r-f NMilrufcioiuJfflJ

■ B|lDiOiiiJeiiE8lttic
! i htvmmum]

i lillliiiaMssiis
I tiMtSostessWii:

B-ilDSMt
i {-* M(D8%skmmM
' !••• WIDSasfcniwIel
i j-t WStshnmiti

■ rteiMiAiBtjnnwi
■ i-IOoMIAliislMnW

i i-fnilAoguslMnu
i NOMIAllliaJllllW:

: '-♦BiUJfciBlJOMlMI.

ilMIMnpdlBCSW.
j fi Notgsfqnspnse
; "•• BBliiisifflipan.

ttodt
SIMM,

Scenario Information
■^5^1*1 stfl8i!lsftriwaiii*rt.Tllslsjl((imMi(|!ortsffliBilo?iiliiwafc*iiimlm»K^^
rr ■AaiXWUimiasswIMrthiiiiMish^wMil.Milpj.

larfflKter I^lanation
lSsliiiiffiliartHllrtysii(H*fllffiiif8lBiiim»p.lil)iiMtift8iii«MjlsBt*m:

rmmMEXS
UfflrNann: aiw

MMTiM: FaMemM^
MMtanayJoimidentaMniypiiHiihil

lOlM ^lil$MaM.llslttmMisna(lMh.

iilB«ilJiii(l8WHriWffli*iiii(«.MHpyls»s6fc*!l;
irwil istwmBBislalilKnir.liRSalsoliMlsh^mWJwl

animd ■S(siwit«i|iilMoil5li»0|((isat«(M^ilio»ni«iiB. YoiMMlma^ttortiiiwih.

3S«iittB(SflKft|iMrtm8EiiBr«iRiia«i«i((iryMl ilBiWtttf/yH9,lii(i(rtwsitt*B«
m^ »te,MaA8«iiiHij,WettalM**)iiHep(^iilieilwfili8 sifcolhsenmnB.

««lM»,MRSpiitMiniMniMfe
ilisjstoBKHilmhn.

IDSDetectedEvente
•Event E^lanation
Actual Eveiteiithe Seem
IDS Confidence Metric

System Activity when Srem is ran
Sx-'SK'i/xea

Figure 18: IDS Functionality

76

■ Date/Time: The date and time of the incident report indicate when the

intnwion was detected. This information is med by tiie M^ter Analysis

agent to determine if the incident is part of an ongoing attack and to trim

event histories tiiat are p^sed to each Analysis agent.

■ IP Address/Usemame/Process: The IP address, usemame, and process ID

help AAIR identify the intruder. This information is used by the M^ter

Analysis agent and Analysis agents for their internal metrics,

■ Incident Title/Summary: The incident title and summary display the IDS

classification of the intrusion and any supplemental information that the

IDS has on the attack. This information is used by the Master Analysis

and Response Taxonomy agents for their internal metrics.

■ Whether the User is still on the System: E^h incident report also has

whether the user is still on the system. This information is iKed by the

Respome Taxonomy agent in wei^ting various PTI.

Each lA ruiK as a separate thread. The amount of delay between processing

events for the entire system is controlled through the lA sleep function. The user can

modify the simulation speed by setting the scenario delay under the menu item Scenario-

Scenario Delay or through its shortcut key Alt-D. The default value is to process an

event every 100 milliseconds although the user can select a value between 100

milliseconds and 5 seconds.

Several lA events are depicted in the AAIR GUI (Figure 19). Under system

information, the IDS confidence metric is displayed and color coded according to the

77

[J5 Adaptiv* Agsrtiased Inttuslon R8spons« Sv'stem

-r* &»*■ ■ijr-

awRs

giaiaaiHteiiiiM

r»lll!M6l»li)H^P(a)j

lilDSQnMlKMeMc

♦ :.-', '" ■•<.

S-3W»fti«B8M*t
iilTatltteeeMMt
■'ilijplwBftiiiSwrass liils

' h» ttftlifcifitt^mW.

j-»(WilteiwItettWIAifiSJMOOiO

f t MdlbptlhEiMlhigodMDni
|» toinOiirBpinimiftiwiffloiii

r t SMmMR|HiltolM.1A|lifitlOD(i
|~» M(ift|»niftMl(8JI«(iia2iOIIM2
|-1 teiiifOdlitprllomi hf ystnOM
i"* MARepoitnteMtAiWiSllOOimi
h t Aii!fiqiad(i^itblU.tJlqusmiOS(
[-♦ M((»|i«llteWlft««2llll»l3
!-♦ taJn6ilBpoiltoltt.1fcprt3i(llll

j~» *Kini6tfiiBpittm,iftpaawiiii

i j-»aiilGiMB^ittilftltoliBtJlill)i
i r*MilftplftM(«l3ltogrtM)01MJ
i i-ttoiUBlMlwattMMAilBlJiOIIII

Scenario Informtioa
niMM(lstMifcCsintsiiitillM,n$lsaMiiKttntn^nemAi«niMabAstointaiu^lbalm
iiiii«*aJD0fiUI()l|ias3wl*ckfcimiBeisli$,*i(KM,anii|ei|

farareter liplamtion
l)SMi!MfrsttrMMMdit«lnqslm$TCtniMiMiMhlilspiM».lMMiasMMiM
(oilnairrtcroauitsllaMiibKiMIMteMlMDSbinrt^niniigiiiiickMDSgmrtftlsiposi^
NWlsmMnMttiiciiralfciMMsMnliirMinkwMUIlBMlniiilertfnpilslvMKMISusRieK
tniMcimimtfctofe^lliiiKpoK&faUistOK;bil|fgeMnfng6l»ig|ioi1s,lMAMwlconsMiln|»ssili
KPK!s»MMiiW$ewi!spwBOTi«iii((«aiMl,«lt(il»liaii41ielD8ls«ir«iiaili*Mi(ia»5,
ImlwMmgiMmwnatMiniiM.

He idslOw^lMsf
iiMmiiiMeisnlacgdMimri^litewilnaMSha$inllielM/nt|nsslito(dvcofcsaRretl,^hw,a

m NunMvMswin»«ki»iiln|f«iiMMO|iliimWTneCottOMs.Mfi8aiibl5lcHM,Hi
aripUC««Kinn|iEikrwd^taiMriifemM^iM|l^^nSl^iMKillilteli(tolittnaioisim

litto*M«ff
1.E i»liMaS»»rt|aBi»idoiiWim.MBffliw5Wri»«wii(tMR8>iiittsl»MriBrt
sM Ueri#teiia«Dt)9(sM«IOHii.Mn8Agl(iadslK%sk(nMflsrwiles^tonlginlia

Hi itiiim%«(SMtgn^iAiiiusiiigl»OphmaiHlMa|Uonmnu$.Yaicmolnioi^ltaxlilMift^

IM tpnhmnm(lysde(ll(igminylimS»initMtaiit0aiis8bslnikytk4M^kiiA!rtiisilN
Hs MM^ls,^kSinittarv,DeleiMMM)Mllie|iiynlMMilierBifeiifl)eKaiailgiii

PaiameterEjflanation

IDS Confidence Metrics Color-codd

Interface Agent Activity

itiiiiiiiiiiifiiimiiiiiiiiitniiiiiiiiiiiiiiitiiHiiitiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiifiiiiin

Figure 19: Interface Agent Functionality

78

previous success of the IDS. The confidence metric can be modified by the user after

the scenario loads through the menu item Adaptation-Update IDS Confidence Metric or

its shortcut key Alt-C. The color-code thresholds can likewise be modified through the

menu item Options-Set Tree Color Options. This allows usere to customize the user

interface. As each IDS is clicked on, it is parsed into its component parts and displayed

in the right text pane under parameter explanation.

E. Master Analysis Agent

The M^ter Analysis (MA) agent classifies events as either part of an ongoing

attack or M a new attack To make this determination, the MA agent mamtains an event

list history for each Analysis agent and uses three internal metrics: time metric, session

identifier metric, and attack type metric.

1. Event List Histoiy

The MA agent maintains an event history list for each Analysis agent (AA).

While it was initially envisioned that this functionality would be provided by each AA, it

became apparent that the MA agent had to have that functionality to complete its task.

As such, ike MA agent adds and deletes events from event lists. Events are added if the

MA agent determines that the received report is a continuation of an ongoing attack.

Events are removed when they are older than the incident longevity limit. The incident

longevity is set by the system aJministrator and can be adjusted through the AAIR GUI

menu Options-Set Incident Longevity.

79

2. Time Metric

The time metric evaluates the amoimt of time between the l^t received incident

report for each Analysis agent and the current report. Time is classified m short, medium

or long. If the difference between the two times is less than 10 minutes, then the time

metric is set to short. If the difference is more than 10 minutes but less than 60 minutes,

then the time metric is set to medium. If the time metric is longer than 60 minutes, then

the time metric is set to long.

3. Session Identifier Metric

The session identifier metric looks at the IP oldress and user name to determine

if the session mformation supports classifying the new report as either the continuation

of an old attack or a new attack (See Table 4). The session identifier is classified as low,

medium, or high and is a combination of the IP address and user name metrics. The IP

address metric returns high if the IP address is the same. It returns medium if the IP

addresses are different but part of the same subnet. It returns low if the IP Mdresses are

from completely different networks. The user name metric returns high if the user name

is the same on the two reports or low if the umr name is different on the two reports. The

Table 4: Session Identifier Decision Table

Session Identifier User Result
High High High
High Low Mediimi
Medium High High
Mediimi Low Medium
Low High Medium
Low Low Low

80

Table 5: Master Analysis Agent Decision Table

Time Session Identifier Attack Result
Short High High Same
Short High Low Same
Short Medium High Same
Short Medium Low Same
Short Low High Same
Short Low Low Different

Medium High High Same
Medium High Low Same
Medium Medium High Same
Medium Medium Low Same
Medium Low High Same
Medium Low Low Different

Long High High Same
Long High Low Different
Long Medium High Same
Long Medium Low Different
Long Low High Different
Long Low Low Different

decision table for the session identifier metric is listed in Table 4 and the Master

Analysis Decision Table is listed in Table 5,

4. Attack Type Metric

The attack type metric looks at the process mitiating the attack and returns high if

the attacking process is the same in the two incident reporte or low if it is not.

5. Cumulative MA Decision-Making

The cumulative decision table is listed in Table 5. To determine the appropriate

results for this ctesification, a survey of approximately ten security experts at Texas

81

I Adiptw Agstit-bassd Intrusion Rjspons* System
r« isr: liM U33I3X3 Ht

ntfi ■KISS

-^CMRndDiitatk

- • inclMUiifle^p ite^

e-ilD80iiil«t6irtit
; H MlickftOfliflll^

i'lPlaSBBsM*
SflTitfctessslWfic
iEilmpltBMttinSwtisslnlrlt

B ;10(MltepilittaK(ll A^uslJiOOiO.
; • ClwlKnj WijsNMffO^ilrg..

I iMllRlwnwEto(IAipiBI2IIO0Oil.
: 1 B-^CIassipi^rtMiasNm^Oi^Biij.. ^

i ; :-««llrielWicBetliMHr ^
, I I ftmfmtim)m-^r
: i ; :-»Mllteerll*tMtoHDH-aM«lfeBf

; i-fciiflclte|»iliKll»J1Aiiist2ll(l(lli3,
I l-JWdRpitniskiiittagustMllOW!.
i iliatl(lte(«lK*«1*ilBl21<l01il,
! fftMHteprtBtiijllftsystlillilwa.
; i-JftliSR^itiKaMllfcjiBtlMllOMI.
; llftMRipilffiSBtellAJlBtMIIOBl
• i-^Mi!Ri(«rlnt*!i3»ipstfflJ1l»l

'^t mrmmkiikim
■'-• Ml IPMeftSmiOW-DitertiiiKlCtesCN**

--• MltetN*tMljUlW.DIfciit«i*ij('KM«

i-iPA«t

Scaario Inf ormtioa
li«l«S(S(iiBfcfcftiwsyftlailttlllslsitlK(lKift*i«p(«stiiiai)owiliii*lRttmJm(iiMB.iSalii«e
miirtM)08UIDI|iasart«ektorauswlj^Kioil(l,aiH)pj.

Par^tec l^lanation
K»tl(ISllMlrWtallta8lM*Mli^SlmtTOll|*MlWilllspBl^pt,TliJilStad5ttAll^5BB
((^McsmititmiasiitslhinrttetMMIihasMliiBSisactinb^repoililMAAMIHpirtifelMpMite
BI«il8«ft»M*ifc««iiil*m«*iisllirtiirminl»repiilBtofclftliiiiril»rtfi(P(«!S»
«Bi)M»iii9littofcnprl»w|ii)ri5j.lfaMlsMrti(^^MRlngftls«rB|i()ils,ftBWRSrtt«rtahliJiiostibh
KPiBesiiMWiiioflse(mie*(ftSBiiii«lii|ilMHWJ,(iiilioliirliBd,li8lD8lswifactiatrt«iai»itt^
liin M M nrge otmnnsis RH M dlnn

JtodttlChmeWi?
leMi*fcmeiwtkise«lorttdedaMriijlDht«iMeKeWffltasiiiteM,TI«^s*emli'ttfc8«rt,^li!f,(»
p«n.to(8BttetphMliirltwliolifc^fflMi5l«rri«yiiOilii(i^TieBCote0^i»iM«i«oislMd«),p
tMtliii(pWC(iiilMt«iii*tslirMWi5hiiiitMtaM^i«|4idAiSCi)*Mi(ilitb»tal»KM*ls(m
TIftrtlMI)J»l)8Cl«ttlWi8i{*l((.»ll{|llllS)«BS«»IMCl)l1illlMIII»lmiiiaMrlllllBf»C.

Wtsdonrnff
1.iarti»l»Mwli«itrtS!*nliiinialoniiR.*p«te(is*Wjaiii*,MISp(i|!ifch^

lYni (ID Mif^toncmf|nfon using feiO|liiii

•NhpRiiMiiMifpiM bmSc! aiUun torn 01UM h slnMlqAII^, In (liir tei suMdtis of
Ws«MMPa(te,llak8imiMi»,ftllMhtl(lH i)iiUipopilaM«BlilieBsifci«ttsttiiwm.

aniM<ptatin mtiws. YM tnnl m«l|tln tM «Mife,

•Internal MA Metrics
■Ongoing Attack Detected

-New Atteck Detected

IHIIIIilliUHIIIIWItlHHIItmiBHIlUlMlliliillliMiliiiaililiMllillliHiirHtltHIHiHIHIIIIIIlHllllmiHIHIIimilBIM

Figure 20: Master Analysis Functionality

82

A&M and the United States Military Academy was conducted. The cl^sifications were

consistent so that a larger survey size w^ deemed unnecessary.

6. MA GUI

Several MA events are displayed in the AAIR GUI (Figure 20). As each report is

received, it is clMsified as either an ongoing attack or new attack and the internal metrics

(time, IP, user, and attack type) decisions are displayed. This allows the system

^Jministrator to easily trace decisions made by the MA agent.

F. Analysis Agent

The Analysis agent (AA) builds and implements a response plan. To build this

plan, the AA takes the classification and incident report fi'om the MA agent and invokes

the Response Taxonomy and Policy Specification agents. It takes the classification and

constraints fi-om these agents and then iwes its own internal logic to build the plan. This

process is event-driven and the catalyst is the reception of an incident report. There are

two possible scenarios: no plan exists and a new plan must be built; or, a plan existe and

it must be checked for success and possible adaptation.

1. New Plan Generation

If the AA has not previously developed a response plan, it must devise one fi-om

scratch. It builds a new plan by initializing a plan array, applying policy constraints,

setting response taxonomy weights, determining system response goal weights, building

a tentative plan, and building a final plan. Each of these steps is discussed below.

83

a) Applying Policy Constraints: After initializing a plan array, a pointer to the

array is p^sed to the Policy Agent. The Policy Array adds the policy constraints

to the array and passes control back to the AA. At this point, the plan is

constrained but no weightings have been applied.

b) Setting Response Taxonomy Weights: The Response Taxonomy agent takes

incident report and ctesifies the attack. The details of how the report is classified

are discussed in Section G below. The comtrained plan is then weighted to

reflect the response taxonomy ctosification.

c) Determining System Response Goal Weights: As discussed in Chapter III

section C.4, the system response goal fundamentally affects which PTI are

preferred. The response goal array is loaded with a weighting factor based on the

response goal set by the system administrator. The weight matrix can be found in

Appendix D.

d) Building a Tentative Plan: The tentative plan lists all of the PTI that are viable

for the plan. It makes this determination using the following formula:

TentPlan[i] = ((PTMrrayfiJ + RespomeWeights[iJ)/2)*success

where PTIArrayp] contains the policy constraints and response taxonomy

weights, ResponseWeightsp] contains the response goal weights, and success is

the previous success of that PTI. The result is an array, the tentative plan, with

values between 0 and 1. The higher the value, the more appropriate the PTI is for

84

the current situation. Each PTI is then checked for inclusion in the plan by rolling

a random number. If the PTI value is higher then the random number, then it is

viable for possible inclusion m the plan. This makes plan generation

nondeterministic although those PTI that are more appropriate or more successfal

have a much higher probability of being in the final plan.

hi building a response plan, it is important that the plan attempts to either

slow or stop the intruder. Regardless of the attack, AAIR should notify the

system administrator that the system is being attacked. Using the procedures

listed above, it is possible that these plan steps are not viable due to the use of

random numbers. As such, the tentative plan is checked to make sure that either

the slow attack or stop attack plan step is viable and that the notify system

admmistrator plan step is viable. The AA also checks to make sure that at least

one supporting tactic and hnplementation for these plan steps is selected (See

Appendix B and C for supporting tactics/implementations). The end result is a

tentative plan that lists all of the PTI that are viable for the plan.

e) Building a Final Plan: The final plan takes the tentative plan and modifies it to

reflect the relationships between PTI and reflect system criticality mto the

response (See Figure 21). While the tentative plan Usts all viable PTI, it does not

take mto account the relationships between PTI. For example, the tentative plan

may list tiie "gather evidence" plan step as being viable but there are no

supporting tactics or implementations that support tiiis plan step. The final plan

reflects tiiese relationships by recursivefy checking each viable plan step to make

85

aAdaptiM Agwttased Intrusion Response System
MS ;,i-rc 'fjc's *«:t!W(t-j's

4
• iw»i3B»giE3|iai35|rHlliyf

fe BuNhgiiHwi^aii..
M

■ • TamwinyWijiiij/iiaM
- f Re^BiseftialWe||llnilpplHl
• • EmfdpgVajSiSW

B<!]BiihgTei&hPlan |

-• 8*wE«iliiKi:U5
' , • lw/ii*0.47

•-I Ntt|gftil«
E-^Tatts

H EMldhnrteUfliflUB
H WleWictiapifcljgnflW
H PiMisMtemSifM

I* EtlllllMllOlllH»0.6
{-•WaiIll6lltl(K0.4

f-t yirtuseraccoontOJ
r* SuspeNluserjote:ll,l

}-♦ CrwhliattasMI
ft 86iiBBteiiB|rattO.!8
■■-• OenaisinaliiiEBJ

i-iiiptem«i)ti«i
liFMPIan ^

BlPlaiiiBp

4

i-i

r* GfcEwtemcUS
N Slw**),47
■■-• NilSfcOl

N MUnaLogisTaacai
H# yi*uari;c(niitll.l8
'-I flenerahafeprtflj

N EnslleailiMllJiilihiiiemnttiii
[-♦ 6iiiiBllKli8ntrq)iitl).W
'-• lJj4lfcirto«mt0.42 d

!•-• ttrtngPlaiitaess
■-♦Pta&itteeilei

mm
fkim

m

ScKiVkOro**

M scenario into: mtion
ill

angle userJisalrod

iaraieter

Camtti KtoSiadtlisisaskintlilentfepoifstoiaiiortlwoatckshnia
(8UD0/ atklaniBtrtmBrt,

ilMlillHM|igiq

RcoMMm mtb

siippilslepi ideps

iutanmttlB

mgi Ms?
pis iinal

Htodo
iailKlie

popttsli \ih

lYouoaiB
art.

l^pyiur

Mfcolhsi

Ixp; anation
idcii

alerw

MfihSanil!
ME#suM

fl.

II fs

isten
lirsrt

10PS8
8rsM isswna
Mir

sWISfcinmasefted^teerfkiipisotlHlailiioiialiftniiiBiis
JiiilBiiiipleiriBrfcioii,ail(llDnalliigpglrBalBi5i8tafc.lislatft
aire and Hent potHiteUamaKdies.

TNslirtraiiiiiilsiealp

ilmi hfcimiMiMteierp liffi srtclal a stenariuMfiS

iiiita!t6njiM*Milwyr.WllS*olMilsl98rtHii||(l6r

JoBiBigli 0|ii»saii(lMs(Moit Mills, ¥ay{arai«ffl()(|l8 MM

tins menu Item toaihiii tea* t use fe slwW te»ltl|,ie
0 P{te,lickain)Miy, mM hi**) wll h po|«ilaWii lie

■Reprt received
■Building a new plan
'Tentetivepk
■Find Plan

"'""" ''"""liiHiiiiiiiiiiitiiiiiiHmiiiiiiiiiiiiimiiiiiiiiiiiiiHiiiiiiiiiHiiHiiiiiiiiHminiffflinn

Figure 21: Building a New Plan

86

sure that it is supported by at least one underlying tactic and implementation.

Those plan steps that are not supported are removed from the final plan.

Additionally, the shut down host tactic and implementation are removed from the

final plan if it had been selected as viable. Shutting down the host is a last resort

tactic that should not be deployed if there are other viable tactics.

The final plan also incorporates system criticality through a "hard/soft"

shell approach. Critical systems require a hard shell approach where a large

number of PTI are deployed initially to protect the system. The system is critical

and the response system is going to deploy most or all of the viable PTI to

protect the system. For lower priority systems, a "softer" shell can be employed

to protect the system. If these initial measures fail, the plan can be adapted to

strengthen the defense shell. Table 6 lists the relationship between system

criticality and the percentage of viable PTI deployed. The tentative and final plan

are added to the plan histoiy for fiiture use in plan adaptation if adaptation is

requu-ed. The tentative plan and final plan are displayed in the met interface so

that the system administrator can review response plans.

Table 6: Relationship between System Criticality and PTI Deployment

System Criticality
Low
Medium

HiiL
Critical

Percent of PTI initially deployed
0-25%

25-50%
50-75%

80-100%

87

2. Plan Adaptation

If there is an existing plan, the AA checks for plan success and significant

changes in the environment. If there is a failure in the existing plan or significant

changes in the environment, then the AA attempts to adapt the plan. Each of these

situations is discussed below,

a) Plan Success: Each plan that is received is checked for plan success. The

previous plan is loaded fi-om the plan history and each implementation in the plan

is checked for success by comparing its success to a random number. If the

implementation's success is greater than the random number, then the

implementation succeeded. If it is lower, then the implementation has failed and

the plan h^ failed at least in part. Plan failure results in plan adaptation.

Plan adaptation starts at the implementation level and works up to the plan step

level. Each failed implementation is checked to determine if there is an alternate

implementation tiiat has not previously failed and is not akeady in tiie plan. If

tiiere is an alternate implementation tiiat is already in tiie plan, the failed

unplementation is simply removed fi-om the plan. If there is a viable alternate

implementation, it is added to the plan and the failed implementation is removed

firom the plan. If tiiere is no viable alternative, tiie failed implementation and its

tactic are removed fi-om the plan.

88

If there is a failure at the tactics level, each of the plan steps are checked to

ensure that they are still viable. If there has been a failure at the plan step level, a

significant change h^ taken place and the AA develops a new plan, based on the

old plan to remedy failures in the old plan. If all other tactics have failed, the AA

instructs the response toolkit to shut down the host until the system administrator

can take an active role in the defense of the system.

b) Significant Changes: If the previous plan succeeds, the AA checks to see if

significant changes have occurred that may require adaptation. The AA builds a

new plan b^ed on the new incident report (See Section F.l above) and then

compares the new plan to the existing plan looking for significant changes in the

tentative plans at the plan step or tactics level. A significant change is defined as

a change of 0.3 or more in value. If a significant change is detected and the plan

step or tactic is not in the existing plan alre^y, the AA attempts to «id the new

plan step or toctic to the plan by checking for supporting tactics and

implementations in the case of aiding a plan step, or checking for supporting

plan steps and implementations in the case of adding a tactic.

89

sjAdaptlw AgenWased Irtnision Kmmi System

Si

:■♦ 56n3ral3.nciEn:i3p:,ti33
! "• TemlnsleUsHSessiiiJJ
i-fiMliatkrepiiitwwel
B-iMIGiltprtKliBil,

|-t ChKMnjPtaaittBS
;-t PiwFiiiiaitostlipat-nioiinpiii,

i-iTeMiMluserSssslaiilffipliiieriloiilBsftttil
-•NoMmfclriiJemeiiMonAshlite ^
•~t TetfniMleUserSsssiiiTatfcltemoiei

l-iPlanStep

j (-♦ fliiirSttiKKlK
j |-#8lw«ii;0,4?

f-iTacics

j N AiftniLogJuMclli
i r* BiaMiMdiBalRU
i ^-t 8inrt I report oa
B-^lBpteraailiBi

[-• Eiiiil8iiiinaiLiiin»«|«iMiiMi)[i:0J
\-% EiptojIMIatrtS
'-# Senrtiwiileiili^rtU

l-lMlltekBpiir«W,
:-• CllKl|PllliaiK8SS

r • Pliii FilM athistln pat- mMn plM-
:- • IDSMhasiM .^iii-i.iiBi

;-• MaptaimaiceBsstlmpimsiiaidilUa
j"» lOSeddSulslitytertrDSBtelt
&|i(i«e(ll*i)

l-iPhnlii
j j-# 6iiffEiiMHW;l).i

i 'f-tBrnmrni-M
\ '-#Nol|a:OIB
f-|Ta[ics
i F-*W<liBiallJ)gjn|Mc:lli

! H BnWeMdimalKftB
j "# flwrtareiMrtlW
l^iptatiiBi

j-i EMW8iMiiiiiij^|(ijimp6meiiiM:0J

^t BairtWileiitifoitW

s^sK:Cin<e!!

.d

iceiario Informtlon
iBsrtBWsteriaroisCawwsoiloSiaeklislsasKitiifcifriportsMiiaMMlftwfctehma
»|leiMr.tiS3tiroda]fSUDO*tkftoimBertans(t.

Parameter Explanation
leMUmiUggiiigTacI
Bttileilitoiiijanatackl

appillie plan dtps gal

HowdolChangiH

tatanmttlian^Msliiii

Mtodonn^
I.EKffliirBleWialEwils
MririesltMallKift;
William {(ffltumlin

ilP

iMffpiuntasceiirtD
iiarhesjliliitiidls

risilsrtlistHiainB,

MBMRS ti Inwaseta i^rre Bf bilng sDttel addonal iitmion Is
re is a SBge implemiifclijri, ajflonal loiini bmMt^ is lailc. listelt

witeanJIifeilrpiitafe^iaraa^tlfcs,

fcWslirtiriniJiilsrealmh

nd %sta ttiiioii dMets, Mcrp hare sfttted a sceiiai,MBS

liIinililBSMrBiM*Mili)ttyr.WIRSftolMilsliSi*niihr

lli{aitffliiifsii{(ii|praloiiiBiiigisO|iMsai!l«i^ffliB8iius.Y«i{a«ii(fflii(«>iBa«iai
wife.

fseWlngmBiufcmaBiaiiRiiSttnafttysefciiorbiitfcii-Me
!iiail(iptl(5,aaciainimary,MicMbI(l8nls)illli6pplaWi'lil8

•Han Failure and A(kptetion

Plan Fiuie and
toplemenMonAdapMon

iiiiiiiiiiiiiiiiiimiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiimiiiimiiiiiiiiiiimiiiiifiiiiiHiiiiiiiiiiiiiiiisiiiiiiiiiHiiij

Figure 22: Plan Adaptation

90

In summaiy, the AA adapte the plan b^ed on the current situation. If

implementations in the plan fail, the AA attempts to replace the failed implementation

and replans if there are no alternative implementation. If there is a significant change

detected in the envkonment, the AA also attempts to replan and add new PTI to the plan

to address the change. Figure 22 illustrates plan adaptation in the AA.

G. Response Taxonomy Agent

The Response Taxonomy (RT) agent classifies an incident to form the basis of a

response plan. This classification is expressed as an array of PTI with corresponding

weights. The weights are expressed as a number between 0.0 and 1.0. hi performing this

classification, the RT agent must determine the degree of suspicion, the time of attack,

the type of attacker, the type of attack, and the attack implications. Time of attack and

degree of suspicion are constraint criteria that remove PTI from possible inclusion in the

plan. Type of attacker, type of attack, and attack unplications are evaluative criteria that

weight the PTI in terms of their suitability to the current situation. The array of PTI

returned to the AA contams the average of the evaluative criteria with all constrained

PTI removed from consideration. Each of these response taxonomy dimensions is

discussed below in terms of how tiiey are implemented in the prototype.

1. Degree of SiBpicion

The degree of siKpicion is determmed with two metrics: incident count metric

and mcident type count metric. The incident count metric is a count of the incident

91

reports that a particular AA has received. The more incident reports received, the greater

the suspicion that the system is under an attack. The incident ^e count metric is a count

of the different ^e of attacks on a system and like the incident count metric, the more

types of attacks received, the greater the degree of suspicion. Both metrics return a

number between 0.0 and 1.0. The formula for both metrics is:

imidentmetric = mm(count/5, 1.0)

If either metric equals 1.0, then the suspicion is 1.0. Otherwise, the following formula is

used:

Suspicion = confldence(incidemcount -*- typecount)/2

The suspicion metric is then used to constrain PTI. When the suspicion level is

low, for example, twenty-four PTI are constrained so that they are not viable. When the

suspicion level is high, no PTI are constrained. The complete suspicion metric table is

listed in Appendix E.

2. TimeofAtt^k

The time of attack metric is also used to constrain PTI. Certain PTI are not viable

depending on when the attack occurred. For example, terminating a user session does not

make sense after the met has left the system. The time of attack constraint table is listed

in Appendix F.

3. Type of Attacker

The type of attacker metric classifies the attacker as either a novice or an expert

and whether the attacker is launching a manual attack or an automated attack. To make

92

these classifications, four metrics are employed. For human or automated, this method

looks at the number of attacks as well as script attack patterns. If more than six incident

reports are generated in less than a minute, then the attacker is classified as an automated

attacker. Otherwise, the attacker is classified as a manual attacker. The script attack

pattern method is not implemented in this prototype but should be a component in fiiture

prototypes.

For the classification of novice or expert, the system looks at the type of attack

being used as well as the number of different attacks employed. Certain types of attacks

are indicative of an expert attacker due to the complexity of the attack [36].

Additionally, experts can adapt their tactics to compromise a system and this will

incre^e the number of different types of attacks.

Based on these four metrics, AAIR classifies the attacker as novice-automated,

novice-human, expert-automated, or expert-manual. Based on that classification,

different evaluative weights are assigned to each PTI. The complete type of attacker

table is listed in Appendix G.

4. Type of Attack

The type of attack metric classifies the type of attack according to the Lindqvist

intrusion result taxonomy [36]. There is a mapping between the incident title and the

Lmdqvist taxonomy classification. Different classifications result m different evaluative

weights being applied to each PTI. The complete tyrpe of attack table is listed in

Appendix H.

93

5. Attack Implications

The attack implications metric uses the criticality of the system to weight various

responses. The system administrator sets the attack implications and then the TA does a

table lookup. The complete attack implications table is listed in Appendix I.

H. Policy Specification

The Policy Agent (PA) records and applies policy and environmental constraints.

The system administtator can set system constraints through the AAIR GUI using menu

item Options-Response Constraints-Policy Constraints or its shortcut key Alt-Z (See

Figure 23). Constraints can also be specified as a component of a scenario (discussed

below). Constraints are set in the tentative plan array and remove the affected PTI for

future consideration m a plan component.

I. Response Toolkit

The response toolkit executes implementations and monitors the success or

failure of the unplementations. This component is simulated. No implementations are

acttially executed. The success of the implementations is sunulated through a random

number generator that compares the random number with the success metric of a PTI. If

the success metric is higher than the random number, then the PTI is deemed successfol.

In making this determination, only implementations are checked for success as plan

steps and tactics are accomplished through implementations.

94

:iPic^ and Resource Coristrainis

KX^M

Figure 23: Policy Constraint GUI

95

J. System Administrator Interface

The system administrator interface allows the user to load and execute scenarios

and monitor the AAIR response to scenario (See Figure 24). It consists of five principal

components: a response tree, a menuing system, the main text pane, a status bar, and a

progress bar. Each of these components are discussed below.

1. Response Tree

The response tree displays results of the response system. It is divided into three

subtrees: scenario information, system mformation, and system Mtivity.

a) Scenario Information: The scenario information subtree lists all scenario

events as well as those that are detected by the IDSs in the scenario.

b) System Information: The system information subtree lists the system

configuration for the scenario. This includes the system goal, mcident longevity,

attack implications, response constraints, IDS confidence metrics, and the PTI

success metrics. The confidence and success metrics are color-coded red, yellow,

or green according to the degree of previous success. The user can change the

color code thresholds through the menu item Options-Set Tree Color Options and

then clicking on a node in the tree. The user can also change any of the

information in the system mformation subtree through the menu to tailor the

scenario loaded.

96

Fie ttm Cite Aj^iiata m

6 illfciWeiiMloteiHas^aiil
j Nftls
! i-llllDiiiilEwii

I rlliiirlljopipdi

; : kratekplips)

\ iiPhnSiBWsy*
j filarttlwsslWic
j i^lfflptemintiifilwsillite

Response Tree

Menu Sptem-

Main Text Pane-
PropssBar-

Status Bar

See irlo Informtlon
lssiWs«ii8UyWoomii80il*iiaswjaia*lsl88^lri«eiBprtsiwiilltaBaifctmilM
lllifflliiiiUD(lUD|iSfflrt«|)iill|ls,iMffl,i(Ip),

far leter Ixplanition
lillieiliifitisimiiiiiiiisliiittisstihrflipilitopiMfiiimiiRSysii^
lefts iwBlimpimjrtimsrtfcMRSyseslofflln^imaliiisliireioresuKsssimHBteiBittante
wimii >Mli«H«i(lMislliiiiisiiiiiiiiiiMsiwffliiKlrii8«ai.

HwnslChinpthli?
1.Tl»ei(dinttrailtlsMl«Miittortiibteprtus5BttiS5ilslraptem6iililjpo5slWeM^
orp(;wtmAi^eliMlortelralslvsieiiiilerr«itemOpfciispilTiBColDrflpiotisfcmil*i8ti4^

2llBrit8ifv|Bnlalra8ftiMii*irtlviBspoBMi»tAi*taMni(ntetoidBjjytanimMii
BniitaOpliiispjpnaOishlte|Pi)l^Ciiiiia*ilin«jlteslioilwlkf/ii

Mwitai8WlBfiilisMii,pMiioliniBlmpimrtion8UKes8i*8lioii6MnBiiMaplioi||iilfl
liifliiltitett5sMftJls*Wlililiiiirt*nSlfiyttissCjitei#ijl(^Joy{an4o

WWtodonow?
;rtffli^l8ralii«imlttis,iirptiMsehteilastman|Mi8popolabsleilttalEMfcail)filteril

li5e«iii8«n6lat»li)ttf.AWI8alsolM(lsl6SptalMer*les^ttiiiiBiii,

2,1

3.*«mlBS(eMo||faMiijiMn»ita8Ma«m8wior«s«teirtiterl*|,l8iiffteailite
PKl,*tiaM8HIM8iilh«iii)iilep«pyIaMwllM!yls«fl8«iini.

iniJtiliittilyratoiiiflijftiOplwrtMipiiiiiffliJoytamrtmotlBictalMJii.

ij
..1SJCF'»j,V<«ueC

iiiiiiiiiiiiiiiiiiiiiiiiiHiiiiiiiiiiiHiiiiimmniiTiimni

Figure 24: AAIR GUI Components

97

c) System Activity: The system activity subtree depicts the actual running of the

system (See Figure 24). The IDS, interface agents, master analysis agent,

analysis agents, taxonomy agent, and policy agent all have folders that display

the internal operation of the system. The results of all of the metrics previously

mentioned are displayed so that the system admmistrator can trace the actions of

the respoiKe system.

2. Menuing System

The AAIR menuing system provides access to all of the response system's

functions. Users can open, edit and run scenarios and watch AAIR response to incident

reports. Menu items have popup help associated with them so that if the user hovers his

mouse over the menu item, a short description of menu item's functionality is displayed

m a popup window. The most commonly used menu items have shortcut or accelerator

keys assigned to them to facilitate rapid manipulation of the system.

3. Main Text Pane

The main text pane provides detailed information on the tree node selected. It

consists of four components: scenario information; parameter explanation; how do I

change this; and, what to do now.

a) Scenario Information: This section of the main text pane displays a short

description of the loaded scenario. If no scenario is loaded, the scenario

information mdicates no scenario has been lo^ed.

98

b) Parameter Explanation: Each node in the response tree has an associated

explanation so that when the user clicks on a node, an explanation of the node

contents is displayed under parameter explanation.

c) How Do I Change This: If the selected node's information can be changed,

this portion of the main text pane displays the procedures for changing the node's

information.

d) What to Do Now: This portion of the main text pane displays what the user

should do next. If a scenario is not loaded, the system displays how to load a

scenario. If a scenario is loaded but has not been run, the system displays how to

change the scenario parameters and how to run a scenario. The advice provided

is node sensitive so that m the user changes nodes in the response tree, the advice

provided changes.

4. Status Bar

The status bar provides immediate feedback to the user m the system executes

and key events occur.

5. Progress Bar

The progress bar provides a graphical representation of the system's progress in

completing a task. This is primarily used to mdicate progress in running a scenario.

99

K. Scenario Management

Scenarios are a collection of incident reports and a system configuration that

allow the user to see AAIR in action. Scenarios are stored in a series of Microsoft

Access tables. The incident reports are loaded into mtemal AAIR tables and drive the

IDSs. The system configuration consists of IDS confidence metrics, PTI success metrics,

and constraints as well as system parameters such as the response goal and incident

longevity. Approximately four hundred variables must be loaded for each scenario run.

L, Summary

The prototype system includes a response taxonomy and implements the

proposed adaptive intrusion response methodolo^. The hiterface Agents receive

incident reports and forward those reporte along with a confidence metric to the Master

Analysis Agent. The Master Analysis Agent classifies the incident as a new attack or as

part of an ongoing attack and forwards the mcident report to the appropriate Analysis

Agent. The Analysis Agent builds a response plan to handle new attacks or adapts

existing plans if the incident is part of an ongoing attack. In devismg plans, the Analysis

Agent invokes the Response Taxonomy Agent and Policy Agent The prototype agents

use a combination of fiizzy rule-bases, crisp rule-bases, and utility fiinctions to make

decisions and respond effectively to intrusions. The attached CD-ROM contams the

code for the prototype system as well is a user's manual.

100

CHAPTER V

RESULTS

A. Introduction

This chapter describes the results of this research. Five domain experts were

shown the prototype and their feedback was used to evaluate the methodology and

taxonomy. The process used is described below as well as the results.

B. Comparison to Other Systems

There are no existing systems with the capabilities unplemented in AAIR. As

discussed in Chapter 11, there are no systems that provide adaptive response or that

implement a response taxonomy. Current response systems provide a static defense with

all respome adaptation provided by the system administrator. Smce there are no existing

systems with which to compare the methodolo^ in this research, an alternate method of

evaluation was med.

101

C. Experiments

As discussed in Chapter IV, a prototype system was built to demonstrate the

feasibility of the methodology. Once the prototype was completed, several experiments

were conducted with the purpose of verification and validation. These experiments were

implemented as scenarios. In all these experiments, 1-3 attackers were simulated

attacking a single system that employed two IDSs to protect the system.

The first set of experiments involved testing the classification of attacks as an

ongoing or new attack. Twelve scenarios representing attacks by one, two and three

different attackers were conducted. The length of each attack was also varied firom three

incident reports to twenty mcident reports with the system performing as expected and

classifying the attacks correctly.

The second set of experiments tested the plan generation portion of the system. A

series of scenarios were developed in which the system developed a response plan.

These scenarios varied fi-om simple repeated SUDO attempts to sophisticated attacks

that consisted of three different ongoing attacks each employing multiple attack

techniques. ITie security experts examined the situation and the response plan and

universally confirmed that the response plan was viable and appropriate.

The third set of experiments involved testing the adaptive nature of the system. A

series of scenarios were developed in which the system hsd to adapt due to plan failures.

These plan failures required adaptation at the tactics and implementation level as well as

adaptation b^ed on significant changes m the environment. The security experts

102

ex amined the situation and the resultant system adaptation and again concluded that the

adaptation was viable and appropriate.

D. Verification

Verification is the process of ensuring that the system performs as designed ("Is

the code correct?") based on software engineering specifications. This is essentially an

issue of software writing and testing. Does the code do what the designer wanted it to

do? Techniques for verifying a system include [47]:

■ Write and debug the program in subprograms or modules.

■ Have multiple external people review the programming.

- Run the program under a variety of inputs and see if the output is

rcMonable.

■ Use an interactive debugger or print out program traces to ensure each

component of the system performs correctly.

■ Run the system under simplifying assumptions.

■ Examine animations ofthe program output

Banks, et al., provide a similar list [48]. However, Banks recommends a graphical

interface for accomplishing verification and validation due to its usefiilness as a form of

self-documentation.

Four of the previously mentioned techniques were employed in the verification

of AAIR. Modular programming using an object-oriented approach facilitated the

development of small, easily verifiable system components. Objects could be isolated

103

and tested so that the functionality of each object could be verified independently of the

other objects in the system. Verification was also accomplished by having two external

programmers and security experts examine the program code. This periodic review of

code by subject area experts who were fluent in Java, in many cases, led to significant

enhancements to the program and verification that the program was working as designed

and w^ correct.

The two remaimng verification techniques employed running the program under

a variety of input parameters to check if the output was reasonable and by animated

traces of program execution. By running the program usmg a variety of input

parameters, boundary condition could be checked and verified. By having security

experts check system output under a variety of situations and conclude the system output

is reasonable, the overall correctness of the system can be verified. Finally, the contents

of the system activity subtree in the AAIR GUI represents a very detailed and extensive

trace of the system. All of the mtemal metrics are visible and the user can easily confirm

that the ^stem is working as designed and specified.

Given the reliance of AAIR on crisp rule bases, testing these rule bases was

critical to the verification of the entire system. Fortunately, tiie crisp rule bases were

small. Several test cases were built. The facts that corresponded to these test cases were

asserted mto the rule base. The output of the crisp rale base was compared to tiie known

correct answer for the test case. Testing was conducted of the rule bases in the MA

agent, AA, and TA. The various agents and their associated rule bases performed as

specified.

104

E. Validation

Validation is the process of ensuring that the program solves the desired problem.

Unlike verification, validation is used to determine whether the designed system is

mefol to the target consumer. Validity is also used to decide whether the system

provides answers that "make sense" or are useful to human experts. Validation was

done via extensive testing and experimentation, based on input from security experts.

Law and Kelton provide a three-step approach for providing validation [47]:

■ Face validity

■ Test the assumptions of the system empirically

■ Determine how representative the output data is

Due to lack of systems with which to compare the proposed methodology, the

principal method of system validation was face validity. Face validity w^ obtained by

placmg security experts in front of the system and collecting their assessment of how

well the system performed.

1. Validation of the Master Analysis Agent

The validity of the MA agent was demonstrated by prototype system AAIR and

the first experiment on the prototype system. Given an incident report, the MA agent

correctly classified the incident either as a new attack or as part of an ongoing attack.

The sub-metrics internal to the MA agent performed as expected and were validated by

the security experts. These experts also validated that the classification was usefal in

forming a response plan.

105

2. Validation of the Analysis Agent

The validity of the AA was demonstrated by the prototype system and the second

and third experiment Given a set of incident reports, the AA develops a response plan

and then intelligently adapts that plan as the situation changes. When a plan component

failed, the AA removed the failed PTI and either substituted an alternate implementation

or replamied at the tactics level. If there is a significant change in the enviromnent, the

AA adapts the plan by adding the appropriate PTI. The AA solves the real-world

problem of adaptively responding to an intrusion.

3. Validation of the Response Taxonomy

The validity of the TA was demonstrated by the prototype system and the second

and third experiment. The success of the AA is dependent on the success of the TA in

weighting the various PTI given a situation. The AA cannot succeed if the TA fails.

Given that the AA is valid, it follows that the TA must likewise be valid.

106

CHAPTER VI

SUMMARY AND CONCLUSIONS

A. Summary

The purpose of this research was to develop a taxonomy and methodology for

intrusion response. The taxonomy provides a theoretical foundation for the consistent

classification of intrusion incidents and the selection of intrusion response goals. The

methodology provides an Captive approach for providing intoision response that

significantly extends the state of the art in intrusion response. The methodology replaces

the limited decision tables found in most IRSs with a robust and explicit re^oning

mechanism that adapts over time to provide better intrusion response.

The implemented prototype demonstrates that tiie overall methodology is sound.

During an attack, the AAIR system effectively responds to an incident by developing a

response goal, developing a plan to obtain that response goal, and implementing that

plan. AAIR a<kpted the plan over the course of the incident based on the success or

failure of the initial plan. The system also effectively adapted respomes over the long

terms based on the confidence and success metrics maintained by the system. The testing

of this system indicates that AAIR is working as designed and implemented.

107

B. Significance of Research

The principle contribution of this research is to provide a taxonomy and

methodology for intrusion response. This research addressed a number of important

issues:

■ The development of an intrusion response taxonomy. This research significantly

extends previous security response taxonomies to include a number of new

taxonomy dimensions such as type of attacker, type of attack, and environmental

constraints. The taxonomy provides the theoretical infrastructure necessary for

any intrusion respome system.

■ The development of an intrusion response methodology with explicit re^oning

mechanisms. This research significantly extends previous mtrasion response

systems by providing a sound methodolo^ for re^oning and respondmg to

intrusions. Instead of using limited decision tables, the AAIR methodology

provides a cognitive fiamework for responding coherently and adaptively to

intrusions.

■ Response adaptation to intrusive behavior. The system adapte over time to

provide better responses by modeling associated mtrusion detection systems and

the success and failures of plans and tactics. As attackers change their

exploitation techniques, the response systems adapts so that it can better thwart

their attacks.

The overall benefit of this research is to provide a foundation on which other intrusion

response systems can be built. This methodology will support automatic, adaptive

108

intrusion response that will limit the effectiveness of computer attackers. The

implemented prototype demonstrates the feasibility of this approach. Given a production

system with the capabilities of the proto^e system, a system administrator will be more

effective in defending a computer system from attack.

C. Future Work

The prototype AAIR was never intended to be a commercial system. It was

intended to demonstrate the feasibility of the overall methodolo©r. The area of

automatic intrusion response is an emerging research area that will require extensive

research. As such, there are areas of future work to be explored m the AAIR prototype.

1. Development of the Response Toolkit

The prototype did not hnplement the response toolkit as the actual responses

were not critical to an evaluation of the methodolo^. However, the implementation of a

modular response toolkit would provide a suite of response tools that could be used by

system administrators, IDSs, and IRSs. It would facilitate the mclusion of both manual

and automatic intrusion response capabilities in future security tools and provide a

standard unplementation for respondmg to attacks. This would be an outetanding

Master's degree project or thesis.

2. Interface Agents

Maintaining multiple confidence metrics on the same IDS instead of a single

metric should enhance the accuracy of the IDS models within the interface agents (See

109

IDS

1

IDS

^

lA

r*

J lA

Figure 25s Enhanced Interface Agent Architecture

Figure 25). For example, an IDS may provide excellent detection of bufifer-overflow

attacks and poor detection of race condition attacks. This increase in model granularity

may be worth the performance and complexity cost of implementing and maintaining

multiple confidence metrics. Additional research is necessary.

The interface agent is an obvious, high priority attack candidate. If the mterfo^e

agents stop fimctioning, the system cannot respond to computer attacks. Adding

redundant mterface agents to tiie same IDS such as indicated m Figure 25 would

enhance the survivability of the respoiwe system.

110

3. Network Support

The methodolo^ provides an intrmion response ^stem for a single computer

system. A distributed IRS system would offer significant advantages. Agent components

of the system could be mobile and move from system to system thus enhancing their

survivability. Intrusion responses could be coordinated across multiple systems so that

the attaclced system was not necessarily the system to enact the response. Dedicated and

hardened "bastion systems" could respond to attacks thus drawing future attacl^ to

themselves iiKtead of computing systems. Network support is the next logical step in the

research of IRSs.

The methodology could provide network support with the following

modificatioM (See Figure 26). Each computing system would require a coordination

Subnet
Respoiwe System

Network
Response System

Institutional
Response System

Subnet
Response System

Network
Response System

Institutional
Response System

Subnet
Respoiwe System

Network
Response System

Imtitutional
Respome System

Figure 26; Network Architecture Extension

Ill

agent to handle communications witii the respome component of other systems.

Response systems would be organized hierarchically in a three-tier architecture system

with subnet, network and institutional response systems. The respome to an intrusion is

performed at the lowest applicable level while information sharing occurs at all levels to

msme that all components of the response system are aware of ongoing incidents. The

fimctionality internal to each respoiwe system (subnet, network, and institutional) would

remain as in this dissertation with the exception that a subordinate system may be

directed to implement a response from a response ^stem higher in the response

hierarchy,

4. Agent Protection

Any IRS is a primaiy attack candidate. If an attMsker can corrupt the response

system, he or she has a perfect vehicle for attacking other systems. This prototype did

not address Ms issue. Future response systems should incorporate internal protection

mechanisms so that the response system cannot be compromised. An authorization and

authentication infrastructure based on public key technolo^ such m the one currently

bemg researched by Humphries [49] appears to be promising for addressing tihe issue of

agent protection in intrusion response systems.

5. Better User Interface

While the user interface is adequate for a prototype, user interface design for an

IRS is an area of fiiture research. The interface of a real-time system is a fimdamental

determinant of the system's effectiveness. The interface must be intuitive, easy to use.

112

and powerful. It must present the right information at the right time for the system

administrator to effectively monitor and affect an ongoing attack. The system

administrator must be able to rapidly ^sess what actioM the resporae system has taken,

what responses are currently being implemented, the effectiveness of these actions. The

system admmistrator should be able to quickly choose a mix of manual and automatic

responses to a system with tiie system adapting b^ed on the user decisions. After an

attack, the system administrator must be able to ^sess the damage to the attacked system

from the same interface. The system administrator must be able to rapidly select the

degree of detail necessary to make decisions. This information presentation ranges from

the absfract to the specific. Reporting and long-term analysis of intrusion responses is

similarly a necessaiy component. While the current interface is not ineffective, further

work is necessary to fine-tune the efficacy of this component.

6. Long-term Adaptation to Known Attackers

The methodolo©' provides adaptive intrusion response throughout a session. It does not

provide, however, for the maintenance of state information and attack signatures of

known attackers. By maintaining this information, the analysis agent could tailor ite

response plan to the attacker and provide an implementation mechanism for a long-term

plan to detect and defeat known attackers.

113

REFERENCES

[I] CERT Coordination Center, "CERT/CC Statistics for 1988 through 1998,"
Available at http://www.cert.or^stats/cert_stats.html, January, 2000.

[2] CERT Coordination Center, "CERT Coordination Center 1998," Available at
http://vTOW.cert.or^annual_rpts/cert_rpt_98.html, January, 2000.

[3] CERT Coordination Center, "Results of the Distributed-Systems Intruder Tools
Workshop," Available at http://www.cert.org/reports/dsit workshop.pdf, March
2,2001.

[4] F. B. Cohen, "Simulating Cyber Attacks, Defenses, and Consequences,"
Available at http://all.net/joumal/ntb/simulate/simulate.html, May 13,1999.

[5] J. P. Anderson, "Computer Security Threat Monitoring and Surveillance," Tech
Report 79F296400, J.P Anderson Co., Fort Washington, PA, April 15,1980.

[6] D. E. Denning, "An Intrusion-Detection Model," IEEE Transactions on Software
Engineering, vol. 13, no. 2, Februaiy, 1987, pp. 222-232.

[7] M. Bishop, S. Cheung, and C. Wee, "The Threat from the Net," IEEE Spectrum,
vol. 34, no. 8, August, 1997, pp. 56-63.

[8] M. Esmaili, R. Safavi-Naini, and J. Piepr^k, "Computer Intrusion Detection: A
Comparative Survey," Tech Report 95-07, Center for Computer Security
Research, University of WoUongong, WoUongong, NSW 2522, Australia, May,
1995.

[9] A. Sundaram, "An Introduction to Intrusion Detection," Crossroads: The ACM
Student Magazine, vol. 2, no. 4, April, 1996, pp. 26-41.

[10] H. S. Teng, K. Chen, and S. C.-Y. Lu, "Adaptive Real-time Anomaly Detection
Using Inductively Generated Sequential Patterns," m Proc. IEEE Symp. on
Research in Security and Privacy, Oakland, CA, May 7-9,1990, pp. 278-284.

[II] T. F. Lunt, "A Survey of Intrusion Detection Techniques," Computers &
Security, vol. 12, no. 4, June, 1993, pp. 405-418.

[12] T. Lane, "An Application of Machine Learning to Anomaly Detection," Tech
Report 97-03, COAST Laboratory, Department of Computer Science, Purdue
University, West Lafayette, IN, Februaiy, 1997.

114

[13] K. Dgun, "USTAT: A Real-Time Intrusion Detection System for UNIX," in
Proc. IEEE Symp. on Research in Security and Privacy, Oakland, CA May 24-
26,1993, pp. 16-28.

[14] S. Kumar and E. H. Spafford, "A Pattern Matching Model for Misuse Intrusion
Detection," m Proc. 17th National Computer Security Conf., Baltimore MD
October 11-14,1994, pp. 11-21.

[15] T. D. Garvey and T. F. Lunt, "Model Based Intrusion Detection," in Proc 14th
National Computer Security Conf., Washington, DC, October 1-4,1991, pp. 372-
385.

[16] R. Anderson and A. Khattak, "The Use of hiformation Retrieval Techniques for
Intrusion Detection," in Proc. First International Workshop on the Recent
Advances in Intrusion Detection, Louvain-la-Neuve, Belgium, September 14-16,
1997, Available at http://www.zurich.ibm.com/pub/Other/RAJD/Prog RAID98/
Tallffi.html#Anderson_33.

[17] C. Ko, M. Ruschitzka, and K. N. Levitt, "Execution Monitoring of Securily-
Cntical Programs in Distributed Systems: A Specification-based Approach," in
Proc. IEEE Symposium on Security and Privacy Conf., Oakland CA Mav'4-7
1997, pp. 175-187. ' ^ ^<^y-* ',

[18] R. Buschkes, M. Boming, and D. Kesdogan, "Transaction-based Anomaly
Detection," m Proc. Workshop on Intrusion Detection and Network Monitoring
Santa Clara, CA, April 9-12, 1999, Available at http://ftp.sage.usenix org/
publications/libraiy/proceedings/detection99/ftill_papers/buschkes/buschkes htm
1/index.html. ~

[19] E. A. Fisch, "hitrusion Damage Control and Assessment: A Taxonomy and
Implementation of Automated Responses to hitrusive Behavior," PhD
Dissertation, Department of Computer Science, Texas A&M Universit^ CoUeee
Station, TX, 1996. ^ ^

[20] G. B. White, E. A. Fisch, and U. W. Pooch, "Cooperatmg Security Managers: A
Peer-based Intrusion Detection System," IEEE Network, vol. 10, no 1
January/February, 1996, pp. 20-23. ' '

[21] P. A. Porras and P. G. Neumann, "EMERALD: Event Monitoring Enabling
Responses to Anomalous Live Disturbances," in Proc. 20th National Information
Systems Security Conf., Baltimore, MD, October 7-10,1997, pp. 353-365.

[22] P. G. Neumann and P. A. Porras, "Experience with EMERALD to Date," in
Proc. 1st USENDC Workshop on Intrusion Detection and Network Monitoring,

115

Santa Clara, CA, April 11-12, 1999, Available at http://www2.csl.
sri.com/emerald/downloads.html.

[23] F. Y. Jou, F. Gong, C. Sargor, S. F. Wu, and W. R. Cleaveland, "Architecture
Design of a Scalable Intrusion Detection System for the Emerging Network
hifrastructure," Tech Report CDRL A005, MCNC, Research Triangle Park, NC,
April, 1997.

[24] K. Ilgun, "USTAT: A Real-Time Intrusion Detection System for UNIX," MS.
Thesis, Computer Science Department, Univereity of California, Santa Barbara,
CA, 1992.

[25] G. Vigna and R. A. Kemmerer, "NetSTAT: A Network-based Intrusion
Detection System," Computer Security, vol. 7, no. 1, June, 1999, Available at
http://www.cs.ucsb.edu/~vigna/listpub.html.

[26] G. Vigna and R. A. Kemmerer. "NetSTAT: A Network-b^ed Intrusion
Detection Approach," in Proc. Computer Security Applications Conf., Scottsdale,
AR, December 7-11,1998, pp. 25 - 34.

[27] H. Webster, Webster's II New Riverside University Dictionary, Boston: The
Riverside Publishmg Company, 1984.

[28] M. Bishop, "A Taxonomy of UNIX System and Network Vulnerabilities," Tech
Report CSE-95-I0, Purdue University, West Lafayette, IN, May, 1995.

[29] R. Bibsey and D. HoUingworth, "Protection Analysis Project Final Report,"
Tech. Report ISI/RR-78-13, USC Information Sciences Institute, Marina del Rey,
CA, May, 1978.

[30] C. E. Landwehr, A. R. Bull, J. P. McDermott, and W. S. Choi, "A Taxonomy of
Computer Program Security Flaws," ACM Computing Surveys, vol. 26, no. 3,
September, 1994, pp. 211-254.

[31] T. Aslam, "A Taxonomy of Security Faults in the Unix Operating System," MS.
Thesis, Department of Computer Science, Purdue University, West Lafayette, IN,
1995.

[32] R. P. Abbott, J. S. Chin, J. E. Donnelley. W. L. Konigsford, K. Tokubo, and D.
A. Webb, "Security Analysis and Enhancements of Computer Operation
Systems," Tech Report NBSIR 76-1041, National Bureau of Standards,
Gaithersburg, MD, April, 1976.

116

[33] T. Aslam, "Use of a Taxonomy of Security Faults," Tech Report 96-05, COAST
Laboratory, Department of Computer Science, Purdue University West
Lafayette, IN, March, 1996.

[34] M. Crosbie, B. Dole, T. Ellis, L Krsul, and E. H. Spafford, "IDIOT - User's
Guide," Tech Report TR-96-050, COAST Laboratory, Purdue University West
Lafayette, IN, September 4,1996.

[35] P. G. Neumann and D. B. Parker, "A Summary of Computer Misuse
Techniques," in Proc. 13th National Computer Security Conf., Baltimore MD
October 10-13,1989, pp. 396-407.

[36] U. Lindqvist and E. Jonsson, "How to Systematically Classify Computer Security
Intrusions," in Proc. 1997 IEEE Symp on Security and Privacy, Oakland CA

_ May 4-7,1997, pp. 154 -163. ' '

[37] S. Franklin and A. Graesser, "Is It an Agent, or Just a Program?: A Taxonomy
for Autonomous Agents," in Intelligent Agents III: Proc. Workshop on Agent
Theories. Architectures, and Languages, M. J. W. a. N. R. J. Jorg P. MtUler ed
Beriin: Springer-Verlag, 1997, pp. 21-36. ' '

[38] J. M. Bradshaw, Software Agents, Menlo Park, CA: AAAI Press, 1997.

[39] S. Russell and P. Norvig, "Intelligent Agents," in Artificial Intelligence A
Modern Approach, ed., Englewood Cliffs, NJ: Prentice-Hall, 1995, pp. 31-50.

[40] P. Maes, "Modeling Adaptive Autonomous Agents," ^rrMcia/£ife,vol 1 no 1
Fall, 1994, pp. 135-162. '

[41] P. Maes, "Agents That Reduce Work and Information Overload,"
Communications of the ACM, vol. 37, no. 7, July, 1994, pp. 31-41.

[42] P. Maes, "Situated Agents Can Have Goals," in Designing Autonomous Agents:
Theory and Practice from Biology to Engineering and Back, P. Maes, ed
Cambridge, MA: MIT Press, 1994, pp. 49-70.

[43] M. H. Coen, "SodaBot: A Software Agent Environment and Construction
System," Tech Report AI 1493, Massachusetts Institute of Technology
Cambridge, MA, June, 1994.

[44] H. Nwana, "Software Agents: An Overview," Knowledge Engineering Review
vol. 11, no. 3, November, 1996, pp. 205-244.

[45] M. R. Genesereth and S. P. Ketchpel, "Software Agents," Communications of the
ACM, vol. 37, no. 7, July, 1994, pp. 48-53,147.

117

[46] J Yen and R. Lengari, Fuzzy Logic: Intelligent, Control and Information, New
York: Prentice Hall, 1999.

[47] A M. Law and W. D. Kelton, Simulation Modeling & Analysis, New York-
McGraw-Hill, Inc., 1991.

[48]

[49]

J. Bmks, J. S. Carson, B. L. Nelson, and D. M. Nicol, Discrete-Event System
Simulation, Upper Saddle River, NJ: Prentice-Hall, Inc., 2001.

J. Humphries, "Attack Resistant Mobile Agents for Intrusion Detection
Systems, PhD Dissertation, Department of Computer Science, Texas A&M
Umversity, College Station, TX, 2001.

[50] J. Balasubramaniyan, J. O. Garcia-Femandez, D. Isacoff, E. H. Spafford and D
M. Zamboni, "An Architecture for Intrusion Detection Using Autonomous
Agents," Tech Report 98-05, COAST Laboratory, Department of Computer
Science, Purdue Univereity, West Lafayette, IN, May, 1998.

[51] M. Crosbie and E. H. Spaflford, "Applying Genetic Programming to hitrusion

E??J°°' ''' ''''°''- ^^' ^''" ^y^P- ""^ ^^"^f'c Programming, Cambridge
MA, November 10-12,1995, pp. 1-8. '

[52] M. Crosbie and E. H. Spafford, "Active Defense of a Computer System Using
Autonomous Agents," Tech Report 95-008, COAST Laboratory, Department of
Computer Science, Purdue Umversity, West Lafayette, IN, February, 1995.

[53] M. Crosbie and E. H. Spafford, "Defending a Computer System Using
AutonomoiB Agents," Tech Report CSD-TR-95-022, Department of Computer
Science, Purdue University, West Lafayette, IN, March, 1995.

[54] J. M. Bonifacio, E. S. Moreira, A. M. Cansian, and A. De Carvalho, "An
Adaptive Intrusion Detection System Using Neural Networks," in Proc 14th Int
Information Security Conf SEC'98, part of 15th IFIP World Computer Congress
Vienna, Austna, AugiKt/September, 1998, Available at http://www.intermidia'
icmc.sc.usp.br/~boni/acme/.

[55] J. M. Bonifacio, A. M. Cansian, A. De Carvalho, and E. S. Moreira, "Neural
Networks Applied in Intrusion Detection Systems," in Proc. IEEE World
Congress on Computational Intelligence andUeural Networks, Vienna, Austria.
May 4-9,1998, pp. 205 - 210.

[56] A. M. Cansian, E. S. Moreira, A. De Carvalho, and J. M. Bonifacio, "Network
IntriKion Detection Using Neural Network," in Proc. International Conference
on Computational Intelligence and Multimedia Applications, ICCIMA'97 Gold
Coast, Australia, February, 1997, pp. 276-280.

118

[57] Anzen Computing, "Anzen Flight Jacket for NFR," Available at http://www.
anzen.com/a5/afj_0verview.html, Januaiy 24,2000.

[58] M. Sobirey, B. Richter, and H. Konig, "The Intrusion Detection System AID," in
Proc. Intl. Conf. on Communications and Multimedia Security, London UK
September, 1996, pp. 278-290.

[59] M. Sobirey, "The Intrusion Detection System AID," Available at http://www-
mks.informatik.tu-cottbus.de/ sobirey/aid.e.html, January 26,2000.

[60] J.-L. Lin, X. S. Wang, and S. J. Jajodia, "Abstraction-Based Misuse Detection:
High-Level Specifications and Adaptable Strategies," in Proc. 11th IEEE
Computer Security Foundations Workshop, Rockport, MA, June 9-11 1998 00
190-201. ' '^*^"

[61] A. Mounji, B. L. Charlier, D. Zampunieris, and N. Habra, "Distributed Audit
Trail Analysis," in Proc. Internet Society Symp. on Network and Distributed
System Security, San Diego, CA. February 16-17,1995, pp. 102 -112.

[62] A. Mounji and B. L. Charlier, "Detecting Breaches in Computer Security: A
Pragmatic System with a Logic Programming Flavor," in Proc. Eighth Benelux
Workshop on Logic Programming, Louvain-La-Neuve, Belgium, September,
1996, Available at ftp://ftp.info.fimdp.ac.be/pub/usere/amo/apere/benelog96.ps.Z.'

[63] A. Mounji and B. L. Charlier, "Continuous Assesment of a Unix Configuration:
Integrating Intn^ion Detection and Configuration Analysis," in Proc. IEEE
Symp. on Network and Distributed Systems Security, San Dieeo, CA Februarv
1997, pp. 27-35. ' ''

[64] G. Tsudik and R. Summers, "AudES- An Expert System for Security Auditing,"
Computer Security, vol. 6, no. 1, June, 1991, pp. 222-232.

[65] T. F. Lunt, "Automated Audit Trail Analysis and Intn^ion Detection: A Survey,"
in Proc. 11th National Computer Security Conf, Baltimore, MD, October 1988
pp. 65-73.

[66] Network Ice, "Blacklce User's Manual, version 1.0," Available at
http://www.networkice.com/Support/Docs/BlackICEProUG.pdf, January 26
2000.

m [67] V. Paxson, "Bro: A System for Detecting Network hitraders in Real-Time,
Proc. 7th USENIX Security Symposium, San Antonio, TX, Januaty, 1998,
Available at http://www-nrg.ee.lbl.gov/nrg-papers.html.

119

[68] P. Proctor, "Audit Reduction and Misuse Detection in Heterogeneous
Environments: Framework and Applications," in Proc. 10th Annual Computer
Security Applications Conf, Orlando, FL, December 5-9,1994, pp. 117-125,

[69] ODS Networks, "CMDS Computer Misuse System," Available at
http://www.intrusion.com/security/products/newcmdsl.shtml, January 31,2000.

[70] Network Associates, "CyberCop hitrasion Protection," Available at
http://www.nai.com/intemational/uk/media/pdfproducts/datasheet cybercop 06
99.pdf, January 24,2000.

[71] Network Associates, "Next Generation Intrusion Detection in ffigh Speed
Networks," Available at http://www.nai.coni/intemational/uk/media/oc/
roducts/ids_nai,zip, January 24,2000.

[72] S. R. Snapp, J. Brentano, G. V. Dias, T. L. Goan, L. T. Heberlein, C.-L. Ho, K.
N. Levitt, B. Mukherjee, S. E. Smaha, T. Grance, D. M. Teal, and D. Man'sur,
"DIDS (Distributed hitrusion Detection System) - Motivation, Architecture, and
an Early Prototype," in Proc. 14th National Computer Security Conf.
Washington, DC, October, 1991, pp. 167-176.

[73] C. Ko, D, A. Frincke, T. G. Jr., L. T. Heberlein, K. N. Levitt, B. Mukherjee, and
C. Wee, "Analysis of An Algorithm for Distributed Recognition and
Accountability," in Proc. 1st ACM Conf. Computer and Communications
Security, New York, NY, November, 1993, pp. 154-164.

[74] C. Ko, G. Fink, and K. N. Levitt, "Automated Detection of Vulnerabilities m
Privileged Programs by Execution Monitoring," in Proc. 10th Computer Security
Applications Conf, Oriando, FL, December 5-9,1994, pp. 134-144.

[75] Network Security Wizards, "Dragon Intrusion Detection," Available at
http://www.network-defense.com/mtro.html, January 26,2000.

[76] L. Spitzner, "Intrusion Detection for FW-1," Available at http://www.enteract.
com/~lspitz/intnKion.html, January 27,2000.

[77] L. Me, "GASSATA, a Genetic Algorithm as an Alternative Tool for Security
Audit Trails Analysis," m Proc. First International Workshop on the Recent
Advances in Intrusion Detection, Louvain-la-Neuve, Belgium, September 14-16,
1998, Available at http://www.2airich.ibm.com/pub/Other/RAID/rog_RAID98/
table_of_content.html.

[78] S. Cheung, R. Crawford, M. Dilger, J. Frank, J. Hoagland, K. N. Levitt, J. Rowe
S. Staniford-Chen, R. Yip, and D. Zerkle, "The Design of GrlDS: A Graph-

[79]

120

Based Intrasion Detection System," Tech Report CSE-99-2, Department of
Computer Science, University of California, Davis, CA, September, 1999.

S Stamford-Chen, S. Cheung, R. Crawford, M. Dilger, J. Frank, J. Hoagland K
N Levitt, C. Wee, R. Yip, and D. Zerkle, "GrIDS: A Graph-based Intrasion
Detection System for Large Networks," in Proc. 19th National Information
Systems Security Conf, Baltimore, MD, October 21-25,1996, pp. 361 - 370.

[80] S. E. Smaha, "Haystack: An Intrusion Detection System," in Proc Fourth
Aerospace Computer Security Applications Conference, Austin, TX, December
1988, pp. 37-44.

[81] p. A. Frincke, J. McConnell, D. Tobin, J. Marconi, and D. Polla, "A Framework
for Cooperative Intrusion Detection," in Proc. 21st National Information Systems
Security Conf, Ciystal City, VA, October 6-9, 1998, Available at
http://csrc.mst.gov/mssc/1998/proceedings/paperF6.pdf

[82] Y. Ho, D A. Frincke, and D. Tobin, « Plamiing, Petri Nets, and hitrusion
Detection, m Proc. 21st National Information Systems Security Conf Crystal
City, VA, October 6-9, 1998, Available at http://csrc.nist.gov/nissc/1998/
proceedmgs/paperFS.pdf

[83] H. Debar, M. Becker, and D. Siboni, "A Neural Network Component for an
Intrusion Detection System," in Proc. IEEE Computer Society Symp on
Research in Security and Privacy, Oakland, CA, May 4-6,1992, pp. 240-250.

[84] H. Debar and B. Dorizzi, "An Application of a Recurrent Network to an
Intrusion Detection System," in Proc. Neural Networks Conf, Baltimore MD
June 7-11,1992, pp. 478 - 483.

[85] M. Asaka, S. Okazawa, and A. Taguchi, "The Implementation of EDA- An
Intrasion Detection Agent System," in Proc. Ilth FIRST Conf, Brisbane
Australia, June, 1999, Available at http://www.ipa.go.jp/STC/IDA/index.html.

[86] M. Asaka, S. Okazawa, and A. Taguchi, «A Method of Tracing totraders by Use
of Mobile Agent," in Proc. 9th Annual Internetworking Conf (INET'99) San
Jose, CA, June, 1999, Available at http://www.ipa.go.jp/STC/IDA/index.html.

[87] D. Samfat and R. Molva, "IDAMN: an Intrusion Detection Architecture for
Mobile Networks," IEEE Journal on Selected Areas in Communications, vol
15, no. 7, September, 1997, pp. 1373 -1380.

[88] T. F. Lunt, "Real-Time Intrasion Detection," in Proc. IEEE COMPCON Spring
Proceedings, Boston, MA, April, 1989, pp. 348-353.

121

[89] T. F. Lunt, R, Jagannathan, R. Lee, A. WMtehurst, and S. Listgarten
"Knowledge Based Intrusion Detection," in Proc. Annual AI Systems in
Government Conf, Wellington, DC, March, 1989, pp. 102-107.

[90] S. Kumar and E. H. Spafford, "A Software Architecture to Support Misuse
Intrusion Detection," Tech Report 95-009, Purdue University, West Lafayette
IN, March, 1995. '

[91] Touch Technologies, "Intouch INSA - Network Security Agent," Available at
http://www.ttisms.com/tti/nsa_www.html, January 31,2000.

[92] Axent Technologies, "Everything You Need to Know about Intrusion
Detection," White Paper Axent Technologies, Rockville, MD, January 31,2000.

[93] L. T. Heberlein, B. Mukherjee, and K. N. Levitt, "Internetwork Security Monitor-
An Intrusion-Detection System for Large-Scale Networks," in Proc. 15th
National Computer Security Conf., Baltimore, MD, October 13-16 1992 DO
262-271. ' ' ^^'

[94] J. R. Winkler and J. C. Landry, "Intrusion and Anomaly Detection: ISOA
Update," m Proc. 15th National Computer Security Conf, Baltimore MD
October, 1992, pp. 272-281. ' '

[95] ODS Networks, "Kane Security Monitor," Available at http://www.intrusion
com/security/products/ksm.shtml, January 31,2000.

[96] J. G. Hochberg, K. A. Jackson, C. A. Stallings, J. F. McClary, D. H. DuBois, and
J. R. Ford, "NADIR: An Automated System for Detecting Network and File
System Abuse," Computers and Security, vol. 12, no. 3, May, 1993, pp. 235-248.

[97] K. A. Jackson, D. H. DuBois, and C. A. Stallings, "An Expert System
Application for Network hitrusion Detection," in Proc. 14th National Computer
Security Conf, Washington, DC, October 1-4,1991, pp. 215-225.

[98] D. G. Simmons and R. Wilkins, "NERD: Network Event Recording Device: an
Automated System for Network Anomaly Detection and Notification," in Proc
Network and Distributed System Security Conf, San Diego, CA, Febnlarv 16-17
1995, pp. 87-93. & ' ' y

[99] Cisco Systems, "NetRanger 2.2.1," Available at http://www.cisco.com/univercd/
cc/td/doc/product/iaabu/netrangr/nr221/nr221ug/index.htm, January 31,2000.

[100] D. Anderson, T. Frivold, and A. Valdes, "Next Generation Intrusion Detection
Expert System (NIDES): A Summaiy," Tech Report SRI-CSL-95-07 SRI
International, Menlo Park, CA, May, 1995.

122

[101] D. S. Bauer and M. E. Koblentz, «NIDX - A Real-Time Intrasion Detection
Expert System," in Proc. USENIX 1988 Technical Conf, San Francisco CA
Summer, 1988, pp. 261-273.

[102] L. T. Heberlein, K. N. Levitt, and B. Mukherjee, "A Method to Detect Intrasive
Activity in a Networked Environment," in Proc. 14th National Computer
Security Conf., Washington, DC, October, 1991, pp. 362-371.

[103] L. T. Heberlein, G. V. Dias, K. N. Levitt, B. Mukherjee, J. Wood, and D
Wolber, "A Network Security Monitor," in Proc. IEEE Symp. on Research in
Security and Privacy, Oakland, CA, May 7-9,1990, pp. 296-304.

[104] PRC Incorporated, "PRC PreCis," Available at http://www.bellevue.prc com/
precis/solution.pdf, February 1,2000.

[105] hitemet Security Systems, "RealSecure Data Sheet," Available at
http://solutions.iss.net/products/rsecure/reaisecure.pdf, Februaiy 2,2000.

[106] L3 Network Security, "Retriever 1.5 FAQ," Available at http://www.l-
3security.com/Products/Retriever/, Februaiy 3,2000.

[107] D. M. Zamboni, "SAINT: A Security Analysis totegration Tool," in Proc
Systems Administration. Networking and Security Conf, Washington DC, May
12-18,1996, Available at ftp://coast,cs.purdue.edu/pub/doc/tools/SAINT.ps!gz.

[108] MineStar hic, "SecureNet Pro Frequently Asked Questions," Available at
http://www.mimestar.com/html/product_faq.htm, February 2,2000.

[109] M. Roesch, "Snort - Lightweight Intrusion Detection for Networks," in Proc.
USENIX LISA '99 - 13th Systems Administration Conf, Seattle, WA, November
10-13,1999, Available at http://www.clark.net/~roesch/lisapaper.txt.

[110] P. A. Porras, "STAT A State Transition Analysis Tool For Intrusion Detection,"
MS Thesis, Department of Computer Science, University of California, Santa
Barbara, CA, 1992.

[111] S. E. Hansen and E. T. Atkins, "Automated System Monitoring and Notification
with SWATCH," in Proc. USENIX Systems Administration Conf (LISA VII)
Monterey, CA, November, 1993, pp. 145-155.

[112] En Garde Systems, "T-Sight on Target Security," Available at http://www.
engarde.com/software/t-sight/index.html, February 7,2000.

[113] G. G. Christoph, K. A. Jackson, M. C. Neuman, C. L. B. Siciliano, D. D.
Simmonds, C. A. Stallings, and J. L. Thompson, "UNICORN: Misuse Detection

123

for UNICOS," in Proc. SuperComputing Conf., San Diego, CA, December 3-5
1995, CD-ROM only.

[114] G. E. Liepins and H. S. Vaccaro, "Anomaly Detection: Purpose and Framework,"
in Proc. 12th National Computer Security Conf., Washington, D.C., October
1989, pp. 495-504.

[115] H. S. Vaccaro and G. E. Liepins, "Detection of Anomalous Computer Session
Activity," in Proc. IEEE Symp. on Research in Security and Privacy, Oakland
CA, May 1-3,1989, pp. 280-289.

APPENDIX A

SURVEYED SYSTEMS

124

System

AAFID
ACME!
AFJ
AID
ARMD
ASAX
AudES
Audit
BlacklCE
Bro
CMDSl
CMDS2
CSM
CyberCop
DIPS
Discovery
DPEM
Dragon
Emerald
FW-1
GASSATA
OrlDS
HaystM;k
Hummingbird
Hyperview
IDA
IDAMN
IDES
IDIOT

1
t
^
^
•

^
•
•
•
^
•
^
•
•
•
•
•

-/
•

,/

•
•

-/

^
^

•/
V

^
^
•
%^
^
-/

^

^

^

^

•/
V

1-i|
1%^

^

•

,/

•

•

-/

III

^

^

•

•

^

1^

I
[50-531
[54-561
[571
[58,591

M.
[61-63]
[64]

M.
ML
ML
[681

ML
[19,20]
[70,711
[72]

ML
[17,73,741
[75]
[21,22]
[76]
[77]
[78,79]
I80L
[81, 821
[83, 841
[85. 861
[87]
[65, 88, 891
[14,34,901

125

System

INSA
Intruder Alert
ISM
ISOA
JiNao
Kane Security Monitor
MIDAS
NADIR
NERD
NetRanger
NetSTAT
NIDES
NIDX
NSM
PreCis
RealSecure
Retriever
SAINT
SecureNet Pro
Snort
STAT
SWATCH
TIM
T-Sigfat
UNICORN
USTAT
Wisdom and Sense

o

^
■/

^
^
^
^

^

^/
^
-/
•
-/
^
•
•
•
•
-/

-/
V
-/
^

^
^

-/
^
^

V
^
^
-/
^
^
•
•
•

V
^
^
^
•
•/
-/
^

 , 9 w

IP
•

^

^

•/

^

4>

I w O IS s-

-/

•

^

V
^

V

•

^

-/
^

•

I

[91]
[92]
[931
[94]
[231
[951
I65L
[96,97]
[981
[99]
[25,261
IIM.
[101]
[102,1031
[1041
[105]

liM.
[1071
[1081
IIM
[110]
[1111
[10]

1112]
[1131
[13,241
[114,1151

126

APPENDIX B

MAPPING BETWEEN PLAN STEPS AND TACTICS

Gather Evidence
Enable ^ditional logging
Enable process accounting
Enable additional IDS
Trace the connection
Employ honey-pot
Employ smoke-pot
Contact the servicing ISP

Communicate with Attacker
Warn the intruder
Force additional authentication

Slow the Attack
Employ honey-pot
Employ smoke-pot
Force additional authentication
Restrict user activity
Turn off modems
Lock user account
Suspend user jobs
Terminate user session
Block IP address
Disable the attMked ports or services
Disconnect from the network

Identic Damaged Files
Enable Mditional logging
Enable process accounting
Enable alditional IDS

NotiJ^ the System Administrator
Generate a report
Generate an alarm

Preserve Evidence
Enable remote logging
Enable logging to unchangeable media
Enable additional IDS
Restrict user activity
Create backups

Social Engineering
Warn the intruder
Force additional authentication

Stop the Attack
Turn off modems
Lock user Mcount
Suspend user jobs
Terminate user session
Block IP address
Disable the attacked ports or services
Shutdown host
Disconnect from the network

Protect Critical Files
Create backups
Employ temporary shadow files

Attack the attacking system
Denial of service attack
System compromise attack

127

APPENDIX C

TACTICS AND IMPLEMENTATIONS

 Enable additional logging
Enable additional logging

Enable logging to unchangeable media
Enable logging to Printer
Enable logging to CD-ROM

Enable process accountiny
Enable process accounting

Ttme the connection
Reverse DNS Lookup
Agent-based appro^h

Employ honey-pot 1
Employ honey-pot 2

Employ honey-pot

Force additional authentication
User name and password again
Ask secret phrase
Lock mer account
Lock user account

Restrict user activity
Restrict user activity

Terminate user session
Terminate user session

Disable the attacked ports or services
All Ports
Only the attacked port

Disconnect from the network
Disconnect from the network

Generate a report
Generate a report

Denial of service attack
Denial of service attack SMURF
Denial of service attack Fraggle
Denial of service attack Tribe Flood

Enable renaote logging
Enable remote logging - machine Gabriel
Enable remote logging - machine Limbo

. Enable additional IDS
Enable an additional IDS - Black
Enable an additional IDS - Gold

Contact the ISP
Contact the ISP by Email

Warn ihe intruder
Warn the intruder -Email
Warn the intruder -Talk

Employ smoke-pot 1
Employ smoke-pot 2

Employ smoke-pot

Block IP address
Block IP address - At the host
Block IP address - At the router

Suspend user Jobs
Suspend user jobs

Turn off modems
Turn off modems

Shutdownhost
Shutdovra host

Complete system
Critical system files

Create backups

Employ temporary shadow files
Employ temporary shadow files

Generate an alarm
Generate an alarm - email
Generate an alarm - pager
Generate an alarm - speaker announcement

System compromise attok
System Compromise Attack automountd
System Compromise Attack ping
System Compromise Attack GetAdmin

128

APPENDIX D

RESPONSE GOAL CLASSIFICATION MATRIX

The response goal classification table lists the effect of the response goal

classification on the formation of a tentative plan. The response goal is an evaluative

criterion. Cells contain a value between 0.20 and 1.00 representing the importance of a

PTI in obtaining a particular response goal. Notify system administrator is important

regardless of the response goal. Higher values indicate more appropriate PTI.

The re^oning employed in the formulation of this table is as follows.

■ Analyze Attack: The goal is to gather as much information as possible

during the attack so that it can be analyzed. Those plan steps that

facilitate this goal (gather evidence, preserve evidence, communicate with

the attacker, social engineering) are heavily weighted. Identifying

damaged files is weighted less but still heavily weighted. Attacking

backing and slowing the attack are discouraged while stoppmg the attack

receives the lowest possible weight.

■ Catch Attack: The goal is to identify and catch the attacker so that future

action can be taken against the attacker. Those plan steps that facilitate

this goal (gather evidence and preserve evidence) are heavily weighted.

Slowing the attack, identifymg damaged files, and social engineering are

weighted less but still heavily weighted. Communicating with the

attacker, stopping the attack, protecting critical files, and attacking back

are discouraged.

129

Mask Attack: The goal is mask the attack so that service is not disrapted

and tiie attack is terminated as soon as possible. Those plan steps that

facilitate this goal (stop the attack, protect critical files, and attack back)

are heavily wei^ted. Gather evidence, communicate with the attacker,

slow the attack, identify damaged files, and social engineering are

weighted less but still heavily weighted. Preserve evidence is

discouraged.

Maximize Confidentially: The goal is to prevent the disclosure of

information. Those plan steps that facilitate this goal (stop the attack,

identify damaged files, and attack back) are heavily weighted. Gather

evidence, preserve evidence, communicate vwth the attacker, slow the

attack, protect critical files, and social engineering are weighted less but

still are heavily weighted.

Maximize Data Integrity: The goal is to prevent the changmg of files on

the system so that their integrity is maintained. Those plan steps that

facilitate this goal (gather evidence, preserve evidence, stop the attack,

protect critical files, and attack back) are heavily weighted. Conmiunicate

with the attacker, slow the attack, and social engineering are weighted

less but are still heavily weighted. Identify damaged files is discouraged.

• Mmimize Cost: The goal is to minimize the cost of implementing a

response m terms of resources. This goal would be appropriate on a non-

critical system that is routinely rebuilt. Those plan steps that facilitate this

130

goal (stop the attack, protect critical system files, attack back and social

engineering) are heavily weighted with attacking back being the highest

weighted response for this goal. All other plan steps are discouraged.

Recover Gracefully: The goal is not to stop the intrusion but to retain the

capability to recover gracefully from any attack with minimal effort.

Those plan steps that facilitate this goal (gather evidence, preserve

evidence, and protect critical files) are heavily weighted. Communicate

with the attacker, slow the attack, stop the attack, and social engmeering

is weighted less but still heavily weighted. Attacking back is

discouraged.

Sustain Service: The goal is sustain service during any attack. While this

goal is shnilar to mask the attack, it is differentiated in that there is no

attempt to stop the attack - providing service is the paramount goal. Those

plan steps that facilitate this goal (slow the attack, protect critical files,

and attack back) are heavily weighted. Gather evidence, communicate

with the attacker, identify damaged files, and social engmeering are

weighted less but still heavily weighted. Preserve evidence and stopping

the attack are discouraged.

131

.i 8 a 'M
** >
9 S

VO "■i: vo oq ■^ ^ oq - oq ^ ■^ ■^ "* M5
m vi

.
>t

fe — 3i a

11 00 oq ^ M5 ^ 1—< oq »—(■^ ^ oq so M5 ■^

«5
«

.H

in
im

C

os
t

"* ■^ ''t ■^ oq ^ oq -- - oq "* "it r^j ■=*;

%

1 ^
III oq oq ^ ^ oq ''t oq ^ oq *o oq oq ^ ^
s fi

>)
8 « .& •«
.1 i 00 oq MD M5 oq OO ^ »—(oo M3 <N <N M r-4
j la '
Sg

u

M
as

k
A

tta
ck

^ -^ ^ ^ oq *o oq ?—(oq ^ CN eN (N (N

^1 «l oo oq -<* M5 ^ ^ ^ V--I -■i- ^o 1—i ^H 1—< oo
^<

%M
ik «

A
na

l
A

tta

oq oq oq '^ M M2 ^ ^ '^ oo *—* _
1-^ oo

ID

'
1

4>

S a il
1
1 1

o
02

8 1

I
•e
o

P (D

11
il 1 O M

o c
CO W

o

E2

•a e
•2 ^

<C3

1
1

1
00

1.1 o m

132

.S 8

s 8
50 m

^

IS

.a ^

I"

VO

00

so

00

^

»

I If

.a tj3
a Es
M •«

S i
u

oo

^^

CN

<S

^

SO

so

00

oo

Cs>

I §^

Is

I1 1^

ts

oo

oo oo

oo

so

00

oo

oo so

so

oo

00

oo

oo

oo

so

so

<N

oo

oo

oo

4) O

I s
Ei^ 8

o
p.
I
>, u
H o

EC

00

so

^

so

so oo

oo

oo

ts

00

oo

so

so

so

oo

o

i>

i

oo 00 so

oo (N

cs

«

^

<N <N ts so

so

00

oo

so

(N

*o

so

00

(N

00

oo

oo

<N

o
—I i-j

c .a ° -S
■M >

Ml

to S2 o e
6 "Q 3 o o

oo 00

oo

(U

s
i s

M

tN

<N

(N

r^ so

tN

CN

t3

I
o

tN so

<N

s
i
o
4>

o P
CM 42

Q 13

00

1
i
o

133

a u •B u s •?
^ C T—^ 1—< f—(00 ^ ■* ^ CN ■* ■* VO OQ 00 oo s S * • •
W 50

>>

oq ^-1 '-< -^ ^ OO ^ ^ v© ¥—4 OO ■"S- '^ '^
3^ m * *
Si u

V .a ^
a "S >o

'■^ "^ 1—* 00 ^ M2 vq oq C4 '^ *-^ *—1 ^

s
.a £■
nn b

•B a
So ^" ,—1 ^^ oo oq oq ^ vq oq -- oq oq oq oq

S S

>?
s « .a-J
i fl <N T—t 1—1 oo 00 cs SO oo oo <N <N 00 oo oo

*

^ o
U

M
as

k
A

tta
ck

00 *—* *"* 00 oq (N oq 1—f vq ■* vq oq oq oq

•s -^
« H
111 vq ■* •^ T-^ rf <N oq oq vq ■=? ■*_ "it

N .^ >> u

A
na

l
A

tta

^ ?—^ »-^ ■^ ■^

1
"

'sr (N oq oq oq -^ ■*, '^

m a 1 M 1 ^ 1 « m
1^

l:
§■1

"3
i S

^1
-a 8

• •-*
s

PI s
8 ft-^ 1 "3

o m

li
S 2

00
1—1

us •a J
8

o i
1 E

<s Q i
t B 1 1 o

3
S 1 o g 8| U«3 Q 00

SI

134

M it

50 CC

tS cs ts 00 00 00 00 ^ ^ 00 00 M

W0

so SO oo ^ so so so so so so so OO SO

•I- .1 i so 00 so so ^o oo ts

.a ^

.1 "S M IS I 00 oo so 00 ao oo 00 oo oo oo

is
Si u

is

u5

1^

H ^

00

<s -^

ts

o

CO • *-(o

t3

i

<N 00 00 OO 00 cs

<N

(N

CN

OO

so

00

00

oo

so

o

s
M

° g o s

oo

° I
H 5/}

o

o

00

M oo 00 o

fs

00

•t-l o

s o
ffiffi

00

ts so

so

so

so

so so

o

M o
B

CO

*-»
o

CD
M
Q
a

4J

i a

00

fS

so

i
^ 8

o
a

M

<N

O o

00

o -c

135

US
M Cl s »

50 C»

o &

.1 i

111'

I-I

u

^ OQ <s 00 00 oo so

M5 M5 ^ ^O 00 IN 00 OO oo 00 oo

oo oo OQ 00 oo 00

^o oo 00 ^ ^ oo oo oo 00 <N M

cs M cs c^ ^ M5 00 00 so oo <N (N

as S

§1

c^ ?s

OQ

00

CN tN oo tN

«N

oo OQ OQ OQ

Q
U

so

bO>
MR
O Q

eso

00
Cl
00
00

S w S O
«2 2

«* M

00

•a
00

3 o
^ 6
a a

?2 2

w

•c

■^ ■*

1-1

m
i 1
cu g

3 o
Q i

■^ ■'j- ■'t

44 o

i
3 Ml
o .g
Q SJ

8
OS 'S
4> M

o <a

m
3

i p.

> o
ID O
^ H-l

<N

OQ

00

(N

•T3

^ 2
W)

0 E2 6

136

S u •B u
gt (5

en Ea
q c »

0 S
?» 50

>>
h =3 i^a s « « o
u u •
u m

«

im
iz

os

t

oo
JU
s
.1 -fe Hi VO oo

SQ| s ^
^

S^ s$.a-S
II ^ oo •
«?a

U

■S^ i 3 M5 ^o

s^

II ^ oo
r*1 ^ U<;

8^
>> u •§ a OO oo

1^
t

K ^
E •a

N4 [i > h^ s 4> ' OJ 1

•S fr ̂ -B fe
rt T:

ill »f.

137

APPENDIX E

SUSPICION MATRIX

ITie siKpicion matrix table lists the efifect of suspicion on the formation of a

tentative plan. SiKpicion is a decision criterion and darkened cells are constrained so that

constrained PTI cannot be a component of an implemented plan.

The re^oning employed in the formulation of this table is m follows:

■ Plan Step level: All plan steps are viable under all suspicion levels except

for attacking back and social engineermg. Attacking back has significant

implications associated with it. As such, it is only viable when there is a

veiy high level of belief that the system is under attack. Similarly, social

engineering attempts to manipulate the user into taking certain actions

diat likewise have substantial implications althou^ not as significant as

attMking back. As such, it is constrained but not as severely as attacking

back.

■ Tactics level: Tw^tics supporting the plan steps attack back and social

engineering are coMtrained at the same level as their parent plan step.

Additionally, those tactics that have system-wide implications are

constrained. Shutting down the host aiid disconnecting from the network

are the most severe tactics and are reserved for only those incidents where

ther« is a veiy high degree of suspicion. Disabling ports and turning off

modems are less severe tactics but have system-wide implications as they

138

can lead to the shutdown of services. Finally, blocking IP addresses h^

the potential of denying service to valid users in a shared terminal

environment. It is constrained so that there must be an appropriate degree

of suspicion that the system is under attack before this response becomes

viable.

Implementation level: Implementations supporting the plan steps attack

back and social engineering are constrained at the same level as their

parent plan step. Implementations supporting the tactics shutdown host,

disconnect from the network, turn off modems, disable attacked ports,

and block IP addresses are constramed at the same level as their parent

tactic. Additionally, the unplementations create complete system backups

and lock user accounts are constrained at a low level. Creating complete

system backups is a resource intensive task that should not be

implemented when there is limited suspicion of an attack. Lock user

accounts is constrained because there are other implementations such as

terminate a user session or suspend user jobs that are more appropriate at

very low levels of suspicion.

139

PTI

PlaiStep
.25

Suspicion Level
.5 .75 1.0

Gather Evidence
Preserve Evidence
Communicate with the attacker
Slow the attack
Stop the attack
Identij^ potential damaged files.
Protect critical system files
Noti^ the System Administrator
Attack the attacking system
Social Engineering
Tactics
Enable ^ditional logging
Enable remote logging
Enable logging to unchangeable media
Enable process accounting
Enable additional IDS
Trace the connection
Employ honey-pot
Employ smoke-pot
Contact the ISP
Warn the intruder
Force additional autiientication
Restrict user activity
Turn off modems
Lock user account
Suspend user jobs
Terminate user session
Block IP address

Disconnect fi-om the network
Create backups
Employ temporary shadow files
Generate a report
Generate an alarm
Denial of service attack

Disable the attacked ports or services
Shutdown host

System compromise attack
toplementatiom
Enable additional logging implementation

140

PTI

Block IP address - At the host
Block IP address - At the router
Contact the ISP by Email
Create backups - Complete system
Create b^kups - Critical system files
Denial of service attwk SMURF
Denial of service att^k Fraeele
Denial of service attack Tribe Flood
Disable the attacked ports or services - All
Disable the attacked ports - Only the
attacker
Disconnect fi-om
implementation

the

Employ temporary
implementation

shwlow

Employ honey-pot 1
Employ honey-pot 2
Employ smoke-pot 1
Employ smoke-pot 2
Enable an additional IDS - Black
Enable an additional IDS - Gold
Force additional autiientication - user
name/password
Force additional auttientication - secret
phrase
Generate an incident report
Generate an alarm - email
Generate an alarm - pager
Generate an alarm
announcement
Lock user account implementation
Enable logging to unchangeable media -
Printer
Enable logging to unchangeable media -
CD-ROM
Enable process accounting implementation
Enable remote logging - machine Gabriel
Enable remote logging - machine Limbo
Restrict user activity implementation
Shutdown host implementation
Suspend user jobs implementation

141

PTI

System Compromise Attack automnnntH
System Compromise Attack ping
System Compromise Attack GetAdmin
Terminate user session implementation
Trace the connection -Reveree DNS
Lookup
Trace the connection -Agent-based
approach
Turn off modems implementation
Warn the uitruder -Email
Warn the intruder -Talk

142

APPENDIX F

TIME OF ATTACK MATRIX

The time of attack metric table lists the effect of time of attack on the fomation

of a tentative plan. Time of attack is a decision criterion and darkened cells are

constrained so that constrained PTI cannot be a component of an implemented plan.

The reasoning employed in the formulation of this table is as follows.

■ Plan Step level: Slowing or stopping the attack is not viable after the

attack has concluded.

■ Tactics level: Similarly, forcing authentication, tracing a connection,

suspendmg user jobs, terminating a user connection, and employing

shadow files are only viable when the user is actively connected to the

system.

■ Implementations level: hnplementations supporting the tactics force

authentication, teace the connection, suspend user jobs, terminate the

connection, and employ shadow files are constrained sunilarly to their

parent tactic. Creating a complete system backup is not viable when the

system is under active attack in all but the most contrived cases. Finally,

warning the intruder through talk is only appropriate when the intruder is

logged onto the system.

143

PH
Plan Steps

Before I During I A^er

Gather Evidence
Preserve Evidence
Communicate with the att^ker
Slow the attack
Stop the attack
Identic potential damaged files.
Protect critical system files
Noti^ the System Administrator
Attack the attacking system
Social Engineering
Tactics
Enable additional logging
Enable remote logging
Enable logging to unchangeable media
Enable process ^counting
Enable additional IDS
Trace the connection
Employ honey-pot
Employ smoke-pot
Contact the ISP
Warn the intruder
Force ^ditional authentication
Restrict user activity
Turn off modems
Lock user account
Suspend user jobs
Terminate user session
Block IP address
Disable the attacked ports or services
ShuMown host
Disconnect fi-om the network
Create backups
Employ temporary shadow files
Generate a report
Generate an alarm
Denial of service att^k
System compromise attack
Implementations
Enable additional logging implementation
Block IP address - At the host

144

PTI —
Block IP address - At the router
Contact the ISP by Email
Create backups - Complete system
Create backups - Critical system files
Denial of service attack SMTTOF

Denial of service attack Fraggle
Denial of service attack Tribe Flood
Disable all ports or services
Disable attacker's ports or service
Disconnect firom the network implementation
Employ temporary shadow files implementation
Employ honey-pot 1
Employ honey-pot 2
Employ smoke-pot 1
Employ smoke-pot 2
Enable an additional IDS - Black
Enable an additional IDS - Gold
Force additional authentication
user name/p^sword
Force additional authentication - secret phrase
Generate an incident report
Generate an alarm - email
Generate an alarm - pager
Generate an alarm - speaker annonnr.ffniPr,t
Lock user account unplementatinn
Enable logging to unchangeable media - Printer
Enable logging to unchangeable media - CD-ROM
Enable process accounting implementation
Enable remote logging - machine Gahrif^l
Enable remote logging - machine Limbo
Restrict user activity implementation
Shutdown host implementation
Suspend i^er jobs implementation
System Compromise Attack automountd
System Compromise Attack ping
System Compromise Attack GetAdmin
Terminate user session implementation
Trace the connection -Reverse DNS Lookup
Trace the connection -Agent-based approach
Turn off modems implementation
Warn the intruder -Email

145

Before During After PTI
Warn the intrader -Talk

146

APPENDIX G

TYPE OF ATTACKER CLASSIFICATION MATRIX

The type of attacker classification table lists the effect of the attacker

classification on the formation of a tentative plan. Type of attacker is an evaluative

criterion. Cells contain a value between 0.25 and 1.00 representing the importance of a

PTI against a particular type of attacker. Higher values indicate more appropriate PTI.

The re^oning employed in the formulation of this table is as follows.

■ Plan Step level:

■ The plan steps of gather evidence, identify potential damaged files,

protect critical system files, and notify system administrator are not

affected by the type of attacker. These plan steps are annotated with a

dash.

■ If an expert is attacking, preserving evidence becomes more unportant as

an expert will take more sophisticated steps to cover his tr^ks. If a

novice is attacking, preserving evidence becomes less important as

novices are easier to detect and will not be m successfiil in altering

system logs of their activity.

■ If a human is attacking, social engineering and communicating with the

attacker become appropriate. If an automated program is attacking, social

engineering and communicating with the attacker becomes less important

as the program is unlikely to respond to social engineering attempts. If a

147

novice is attacking, social engineering and communicating with the

attacker becomes more important m novices can be more easily scared or

manipulated. More experienced attackers may not be so easily

manipulated. Fundamental to the attacker is the idea of being anonymous

- commimicating and social engineering attacks remove this defense to a

certain extent.

■ Slow the attack and stop the attack are related, A novice can be more

easily stopped and this is especially true when the attack is not automated.

An expert is more difficult to stop and slowing the attack, as opposed to

stopping the attack, becomes a more appropriate plan step.

■ Attacking back is going to be more successM against novices as they

have fewer defemes against attacks in general. Likewise, attacking hack

is going to be more effective in the short term if the attack is human-

b^ed and thm the human is present to notice that he is actively being

attacked back.

T^jtic and implementation levels: The logic employed at these levels is

consistent with the logic articulated for the plan step level.

148

PTI Novice
Automated

Novice
Human

Expert
Automated

Expert
Human

Plan Step
Gather Evidence - . . -.
Preserve Evidence .5 .5 .75 .75
Communicate with the attacker .5 1 .25 .75
Slow the att^k .5 .25 .75 .75
Stop the attsxk .75 .75 .5 .5
Identify potential damaged files - - - _
Protect critical system files - - . -
Notify the System Administrator - - . -
Attack the attacking system 1 .75 .25 .5
Social Engineering .5 1 .25 .75
Tactics
Enable additional logging - - . _
Enable remote logging .5 .5 1 1
Enable logging to unchangeable
media

.5 .25 1 1

Enable process accounting 1 .5 .25
Enable additional IDS 1 1 .75
Trace the connection 1 .75 .75
Employ honey-pot .25 .5 .75
Employ smoke-pot .25 .5 .75
Contact the ISP .5 .25 1 1
Warn the intruder .25 .25 .5
Force additional authentication 1 .75
Restrict user ^tivity .5 .25
Turn off modems 1 .75
Lock user accoimt 1 .5
Suspend user jobs .5 .25
Terminate user session 1 .5
Block IP aJdress .75 .75 .5
Disable the attacked ports or
services

.75 .75 .5

Shutdown host - - . -
Disconnect from the network - - -
Create backups .5 1 .25 .5
Employ temporary shadow files 1 1 1 .75
Generate a report - - . _
Generate an alarm .75 .75 1 1
Denial of service attack .75 1 .5 .5
System compromise attack 1 1 .75 .5

149

PTI Novice
Automated

Novice
Human

Expert
Automated

Expert
Human

Implementations
Enable additional logging
implementation

- - - -

Block IP address - At the host 1 .75 .75 .5
Block IP widress - At the router 1 1 1 .75
Contact the ISP by Email .25 .5 .5 1
Create backups - Complete system .25 1 .25 1
Create backups - Critical system
files

- - - -

Denial of service attack SMURF .75 1 .5 .5
Denial of service attack Fraggle .75 1 .5 .5
Denial of service attack Tribe
Flood

.75 1 .5 .5

Disable the attacked ports or
services - All

- - - -

Disable the attacked ports or
services - Only the attacker

1 .75 .75 .5

Disconnect from the network
implementation

- - - -

Employ temporaiy shadow files
implementation

1 1 1 .75

Employ honey-pot 1 .25 1 .5 .75
Employ honey-pot 2 .25 1 .5 .75
Employ smoke-pot 1 .25 1 .5 .75
Employ smoke-pot 2 .25 1 .5 .75
Enable an additional IDS - Black 1 1 1 .75
Enable an additional IDS - Gold 1 1 1 .75
Force alditional authentication -
^k user name and p^sword

1 1 1 .75

Force additional authentication -
ask secret phrase

1 1 1 .75

Generate an incident report - - - -

Generate an alarm - email .5 1 .25 .25
Generate an alarm - pager .75 .5 1 1
Generate an alarm - speaker
announcement

.75 .5 1 1

Lock user account implementation 1 1 1 .5
Enable logging to unchangeable
media - Printer

.5 .25 1 1

Enable logging to unchangeable
media - CD-ROM

.5 .25 1 1

150

PTI Novice
Automated

Novice
Human

Expert
Automated

Expert
Human

Enable process accounting
implementation

1 1 .5 .25

Enable remote logging - m^hine
Gabriel

.5 .5 1 1

Enable remote logging - machine
Limbo

.5 .5 1 1

Restrict user activity
implementation

1 1 .5 .25

Shutdown host implementation - - - .

Suspend user jobs implementation 1 .5 .25
System Compromise Attack
automountd

1 .75 .5

System Compromise Attack ping 1 .75 .5
System Compromise Attack
GetAdmin

1 .75 .5

Terminate user session
implementation

1 .75 .25

Trace the connection -Reverae
DNS Lookup

1 .75 .5

Trace the connection -Agent-
b^ed approach

.75 .75 1 .75

Turn ofif modems implementation 1 1 1 .75
Warn the intruder -Email .75 .75 .75 .75
Warn the intruder -Talk .25 1 .25 .75

151

APPENDIX H

TYPE OF ATTACK CLASSIFICATION MATRIX

The response goal classification table lists the effect of the response goal

classification on the formation of a tentative plan. The system response goal is set by the

system administrator and is an evaluative criterion. Cells contain a value between 0.25

and 1.00 representing the importance of a PTI against a particular response goal. Higher

values indicate more appropriate PTI. The reasoning employed in the formulation of this

table is as follows.

■ Some responses should be executed regardless of the type of attack.

Generate a report is an example,

■ In weighting responses, the severity of the attack and the cost of

implementing the respome were dominant factore.

■ Certain responses only affect the attacker and not the rest of the users on

the system (e.g. lock user account). These responses were always

implemented regardless of the type of the attack. Responses that affected

all of the users of a system were limited to the most severe forms of

attack.

■ Certain responses such as suspending user jobs were considered

appropriate for less severe attacks but mappropriate for more severe

attacks where a more drastic response was deemed appropriate.

152

s

s
B

g

s
i
§

S
i

1

* •

P.
B

i

- - »r ?: v
0 ' v- - - - 9—i 7— - - 7— -- - 4 »—*

— ^—! «n ^ 1—< -- «n A\^
f—* »—< »-H - - - i—H *—1 -- »—«

"1 *—(VI VI
f—! f—i 1—1 - i-x *-^ f^ V5 -- ?—t -

«n »-M «n VJ -
V> V^

?-x *n VI *n *n V) CS -- ^-4 -<

«rj «n 1—(CN 1—1 *n v> VI
tN

V» Vi
CN 1—1 -- *—t ^H f-x -- - ^—! t—^

"1 i-x --
v>

2

v> V) v>
CN

v>
CN ^-* ^-* ?—t - f—t *—t yi *—i) r-^

•^ - ^—) «n VI v> v^
(N

V)
<N

V^
CN - *—(»—* -* »—1 - 1—1 y—) v^

"^ 1—t ?—(f—^
»—i

v>
tN

v>
CM

V)
<N ^-(- ?-H ?--i -- T-K ?-N T—«

v>
CN

*—< - «n f—t »--i *-x f—< VJ 1—) *-^ -^ ir—1 1—(?—« 1—4 - 1—♦ »—4 ^-4 »-^

-- *—t «n ?—« 1—(1—1 v^ *-x ?—(- 1—t •—(^-4 ^-N ir—) ?—1 1—1 ^-1 ^-4 1-x

<n 1-^ Wn v> »—1
V) v» v»

- - t—^ f—(Vj ?-H *—i ?-^
v»

M^ »n VI

V>

f—t
vs V^ V> v^ v» in U^ V5 CN T—1 ^-1 ir-4

V>
CN

-- ^—« - «n VJ
f—* -- 1—(*—^ -^ - ^-* t—^ 1—(-- - T—4 V5

«n -- «n V>
f-x

v^ V> R VJ v^ *n in v> CN ^ - -
VI
tN

1
1

1
3

1
2:

S
0

M

m

1
0 1

m
B

I
3

CO u
2
>. w
4-1

5

1
<

0 z

1
n
<

s
2 5

'5b

§

1

•5b

I

1
3

bn
ab

le
 lo

gg
in

g
to

un

ch
an

ge
ab

le
 m

ed
ia

s»
w

0

3

00

0

3
1

§
0

0
0

0

%

1

1

-
a
0
s w

a
1

1
1
0

1

1
^1 ro

rc
e

ad
di

tio
na

l
au

th
en

tic
at

io
n

>

1
S

1
2

i
0
S

153

i 1-—< »—1 *—1 »—^ 1-1 f—* - r—1 1—(»—I -- -

1 i
i
1

-^-4 1—(1—) f—4
»n

- -

1 ,—4 - *-i - - -- IF-I -- - r—* 1—i 1—(»—K ^1 1-1 - 1-1 VJ -

3 T—« »n - "1 irj y1 - ^-1 f-^ *n »n »—i
«n v^ ^1 "1

i f—(R y_it C4 - 1—1 --
m
fi -

«n «n
1—t

>n

g - ?—(T—(»—1 *-^ 1—4 -- *-^ -- «n - - -
<n «n

e »—1 - *—(T-1
W-5

^H - 1—t w-j - y* - »n
CS cs

g y—* «n ,_^ *n "*1 1—# -

«n

»n ^-4 - ^—* CM
•n
C4

«n

g y-^ - »—1 -
wn
M »n - »—! ^-<

S ^N - »—(1—(-- - - -- - 1—4 p—! - 1—*

i - »rj y—«» »"^ *—* «n »r% f—t ^-1
>n «n

r—< 1—) *—^ 1—1
»n «n

§ tr—^ - *—* «r; tn 'f—1 - «n *rt ^-) «n »n «n «n

u -- T—1 y-mt VS
tp—f

in »—< «n «n «n «n

i ?—(1—t -- «n •n «n »r% m
fi ^-* -' «n VJ - «n »n -

«n tr%

g 1—) r-H| ^-« VJ v> ^^ v»
-

«n

■ 1
1
•'—5

13

1

i

Si

i 1
E2

o o
3

o

i
1
1
1
jj S3 1

T5

1
1
1
1 o o

p

as

1
1
g

1

1
s s

o

i S 1
O

i •a

i S
s

1
J
«J

«4-l o

1
Q

1
s

1
8

1
i« >,

CO

a
f
o o

It

1

w m

1
&
o o
3

1

1

3 g

1

u

1
o
U

9)

t
Q

1
M S It

1
u

1

a s

1
w

541

li

154

g - - r—t »—(y^ ^H -- »—* 1—1 - 1—4 -- 1—4
in

f—(

i]-- -- - - - ^-* f—) - ^^ - - -- - r—t -
«n ^-*

s "n «n «n 1-^ *n - - - - 1—* -- *—t ?—i y—» -
in

--

g 9—i Mn <n «n >n IT; *n -- 1—f ^-N I—(
in

s o
-- ¥-^

«n
- -- ^-i -- ^—) »-^ - »—1 - 1-^

s - 1^
«n
tN ,—t -- ?—) T—t -- -- -- - »—* -

g «r> »n
f—(^^ ^-« - 1—« - ?—) w—* ?—1

«n
r—4

s
"»-^

•n
^-1 »—^ 1-M ^ y-^ ^—i -^ y—! '^-i ■r-^

e - -- - ^-1 1—4 - »—) »—* *—i ?—1 -- -<
in ^-)

§ «rj ^^ »n «n
- - -- ^-* - -- -- - r—t ^-1

§ •n *n *n f—! f^ -- *--^ - - - T—t ^-» in T—i

s «n
CM *n «n iq »n in in w—i -- ^-1 -- R

@
»n »n »n *n «n

- - y—1 *"-t - - - -- 1—f
in

--

2 in in tr% «n <n *n in 1—* - - 1—(
in

CM

D
em

al
 o

f s
er

vi
ce

 a
tta

ck

Fr
ag

gl
e

D
en

ia
l o

f s
er

vi
ce

 a
tta

ck

Tr
ib

e
Fl

oo
d

D
is

ab
le

 th
e

at
ta

ck
ed

 p
or

ts
 o

r
se

rv
ic

es
 -

A
ll

D
is

ab
le

 th
e

at
ta

ck
ed

 p
or

ts
 o

r
se

rv
ic

es
 -

O
nl

y
th

e
at

ta
ck

er

D
is

co
nn

ec
t f

i-o
m

 th
e

ne
tw

or
k

im
pl

em
en

ta
tio

n
Em

pl
oy

 te
m

po
ra

ry
 s

ha
do

w

fil
es

 im
pl

em
en

ta
tio

n

1
o

1

O
-
O
D.

1
O

1

1
.^ o
1

1

■*-* o
D.

i
1
&

1

En
ab

le
 a

n
ad

di
tio

na
l I

D
S

-
B

la
ck

En

ab
le

 a
n

ad
di

tio
na

l I
D

S
-

G
ol

d
Fo

rc
e

ad
di

tio
na

l
au

th
en

tic
at

io
n

- a
sk

 u
se

r
na

m
e

an
d

pa
ss

w
or

d
Fo

rc
e

ad
di

tio
na

l
au

th
en

tic
at

io
n

- a
sk

 s
ec

re
t

ph
ra

se

a
2
1 •a 1
i
s 1 o

1
1

-4

3
13

i
g
O

1

i
i
1
s
a

155

g -< - ^ »—1 - - f-1 - v^
fs - -- 1-1 r-^

i - - f-^ 1—1 1—* - »—1 T-1 - -- -' - -

*"**
8 »—1 - - 1—t »—1 Ifmmt -- 1-1 «n *n «n Mn *n y—i

g - 1—(-- -

g -< - C1 -- 1-1 tN 1-1 - 1-1 --

6 - r—4 -- 1-1 1-1 -- *—1

g »—i(- ^-4 »n
P—(

s - y—* r4
in

-- --

g f—4 -- T—(»—N - -- - *—* 1-1 -< ^ r-H

s T—1 *—1 - f-1 ^-* 1—^ 1-1 y^ «n *r% -

§ -- - - IP—I »n «n "1 «n ^--«

g *-^ -• - »—(

i - »—1 - - - -- 1—* 1—4 »rj »—^ »n «n »n ^-4

2 »—1
?—t ^-* *—(

G
en

er
at

e
an

 a
la

rm
 -

sp
ea

ke
r

an
no

un
ce

m
en

t
Lo

ck
 u

se
r a

cc
ou

nt

im
pl

em
en

ta
tio

n
En

ab
le

 la
gg

in
g

to

un
ch

an
ge

ab
le

 m
ed

ia
 -

Pr
in

te
r

En
ab

le
 lo

gg
in

g
to

un

ch
an

ge
ab

le
 m

ed
ia

 -
C

D
-

R
O

M

En
ab

le
 p

ro
ce

ss
 a

cc
ou

nt
in

g
im

pl
em

en
ta

tio
n

En
ab

le
 re

m
ot

e
lo

gg
in

g
-

m
ac

hi
ne

 G
ab

rie
l

En
ab

le
 re

m
ot

e
lo

gg
in

g
-

m
ac

hi
ne

 L
im

bo

R
es

tri
ct

 u
se

r a
ct

iv
ity

im

pl
em

en
ta

tio
n

Sh
ut

do
w

n
ho

st

im
pl

em
en

ta
tio

n
Su

sp
en

d
us

er
 jo

bs

im
pl

em
en

ta
tio

n
Sy

st
em

 C
om

pr
om

is
e

A
tta

ck

au
to

m
ou

nt
d

Sy
st

em
 C

om
pr

om
is

e
A

tta
ck

pi

ng

Sy
st

em
 C

om
pr

om
is

e
A

tta
ck

G

et
A

dm
in

T

eo
ni

na
te

 u
se

r s
es

si
on

im

pl
em

en
ta

tio
n

156

«n v»

e-

0

s

H

m

*j o
o o g J
a CO

O I—I

H e^

»n

«n

so
<

I

a o

a
w

O t3

E-i ^

«n

»n

«n

«n

«n

»n

»r%

«n

»n

«n

o

83 13

II
4> OT <U

D t^ D

tj "^ "Q

o o o
U O U

o
o **
o o

11
oo U
"3 "3
11
11 o o

o »-i o «

.S QO

8 o

II

St

13

•2-i

S3 o

a d
QQ

■g
CO

o

g
O

p

13

I

PPPP
S i) S i)
« « flj flT

157

APPENDIX I

ATTACK IMPLICATION CLASSIFICATION MATRIX

The attack implication classification table lists the effect of the attack

classification on the formation of a tentative plan. The system attack implication is set by

the system administrator and is an evaluative criterion. Cells contain a value between

0.10 and 1.00 representing the importance of a PTI against a particular attack unplication

level, ffigher values indicate more appropriate PTI. The reasoning employed m the

formulation of this table is as follows.

■ Plan Step level:

■ The plan steps maintain the same weight across implication levels

with the exception of the attack back and preserve evidence plan

steps. Attack back is only viable at the higher levels of attrnk

unplications. Preserve evidence is less unportant at the lower levels of

attack implications.

■ There is a preference to stop attacks as opposed to slowing an attack

mmss all attack implication levels.

■ Tactic and implementation levels: The logic employed at these levels is

consistent with the logic articulated for the plan step level.

158

PTI
Plan Step
Gather Evidence
Preserve Evidence
Communicate with the attacker
Slow the attack
Stop the attack
Identic potential damaged files
Protect critical system files
Noti^ the System Administrator
Attack the attacking system
Social Engineering
Tactics
Enable additional logging
Enable remote logging
Enable logging to unchangeable media
Enable process accounting
Enable additional IDS
Trace the connection
Employ honey-pot
Employ smoke-pot
Contact the ISP
Warn the mtruder
Force additional authentication
Restrict user activity
Turn oflf modems
Lock user account
Suspend user jobs
Terminate user session
Block IP address
Disable Ifae attacked ports or services
Shutdown host
Disconnect fi-om the network
Create backups
Employ temporary shadow files
Generate a report
Generate an alarm
Denial of service attack
System compromise attack
Implementations
Enable additional logging
implementation

Low I Medium I High | Critical

.33

.1
.33

.25

.25

.25

.25

.25

.25

.25

.25

.25

.25

.33
.5

.2
.33

.75

.5

.5

.5

.25

.25

.33

.5
.33

.75

.75

.75

.75

.75

.33
.5

.33

159

 PTI
Block IP «idress - At the host
Block IP address - At the router
Cont^t flie ISP by Email
Create b^kups - Complete system
Create backups - Critical system files
Denial of service attack SMURF
Denial of service attack Fraggle
Denial of service attack Tribe Flood
Disable the attacked ports or services -
All

Disable the attacked ports or services -
Only the attacker
Disconnect fi-om the network
implementation
Employ temporary shaiow files
implementation
Employ honey-pot 1
Employ honey-pot 2
Employ smoke-pot 1
Employ smoke-pot 2
Enable an additional IDS - Black
Enable an ^ditional IDS - Gold
Force additional authentication - ^k
mer name and passvyord
Force additional authentication - ask
secret phrase
Generate an incident report
Generate an alarm - email
Generate an alarm - pager
Generate an alarm - speaker
announcement
Lock user account implementation
Enable loggmg to unchangeable media
- Printer

Enable logging to unchangeable media
- CD-ROM
Enable process accounting
implementation
Enable remote logging - machine
Gabriel

Enable remote logging - machine
Limbo

Low

.25

.25

.25

.25

.25

.25

.25
■25
.25
.25

.5

.25

.25

Medium

.5

.25

.25

.25

.75

.75

High

.75

.75

.75

.75

Critical

160

PTI
Restrict user activity implementation
Shutdown host implementation
Suspend user jobs implementation
System Compromise Attack
automountd
System Compromise Attack pin^
System Compromise Attack GetAdmin
Terminate user session implementation
Trace the connection -Reverse DNS
Lookup
Trace the connection -Agent-based
approach
Turn off modems implementation
Warn the intruder -Email
Warn the intruder -Talk

Low

.25

.25

.25

.25

.25

.25

.25

Medium

.25

.25

.25

High

.75

.75

.75

Critical

161

APPENDIX!

CD-ROM INSTRUCTIONS

The attached CD-ROM contains the source code of the AAIRS prototype.

CUcking on any of the JAVA source files m the root directory will launch the prototype

162

VITA

Curtis A. Carver Jr. was bom 22 December 1960 in Savannah, Georgia. He is a

1983 graduate of the United States Military Academy, West Point, where he earned the

Bachelor of Science degree in computer science and was commissioned as a signal

officer in the U.S. Army. He has served in a number of positions in the Army, achieving

the rank of Lieutenant Colonel. During that period, he earned the Master of Computer

Science degree from Texas A&M University in 1993. In addition to more traditional

military assignments, he served as Assistant Professor in the Department of Computer

Science at the United States Military Academy and the principal investigator of the

Hypermedia Research Group. In 2001 he was awarded a Ph.D. degree in computer

science at Texas A&M University in preparation for a faculty position at West Point.

Curt's permanent address is 741 Wilmington Island Road, Savannah, GA 31410.

